ﻻ يوجد ملخص باللغة العربية
Crowley and Nordstr{o}m introduced an invariant of $G_2$-structures on the tangent bundle of a closed 7-manifold, taking values in the integers modulo 48. Using the spectral description of this invariant due to Crowley, Goette and Nordstr{o}m, we compute it for many of the closed torsion-free $G_2$-manifolds defined by Joyces generalized Kummer construction.
Froyshov invariants are numerical invariants of rational homology three-spheres derived from gradings in monopole Floer homology. In the past few years, they have been employed to solve a wide range of problems in three and four-dimensional topology.
Let $text{G}(n)$ be equal either to $text{PO}(n,1),text{PU}(n,1)$ or $text{PSp}(n,1)$ and let $Gamma leq text{G}(n)$ be a uniform lattice. Denote by $mathbb{H}^n_K$ the hyperbolic space associated to $text{G}(n)$, where $K$ is a division algebra over
It is a prominent conjecture (relating Riemannian geometry and algebraic topology) that all simply-connected compact manifolds of special holonomy should be formal spaces, i.e., their rational homotopy type should be derivable from their rational coh
C. Giller proposed an invariant of ribbon 2-knots in S^4 based on a type of skein relation for a projection to R^3. In certain cases, this invariant is equal to the Alexander polynomial for the 2-knot. Gillers invariant is, however, a symmetric polyn
M-theory compactified on $G_2$-holonomy manifolds results in 4d $mathcal{N}=1$ supersymmetric gauge theories coupled to gravity. In this paper we focus on the gauge sector of such compactifications by studying the Higgs bundle obtained from a partial