ترغب بنشر مسار تعليمي؟ اضغط هنا

Deep Learning Predicts Cardiovascular Disease Risks from Lung Cancer Screening Low Dose Computed Tomography

150   0   0.0 ( 0 )
 نشر من قبل Hanqing Chao
 تاريخ النشر 2020
والبحث باللغة English




اسأل ChatGPT حول البحث

Cancer patients have a higher risk of cardiovascular disease (CVD) mortality than the general population. Low dose computed tomography (LDCT) for lung cancer screening offers an opportunity for simultaneous CVD risk estimation in at-risk patients. Our deep learning CVD risk prediction model, trained with 30,286 LDCTs from the National Lung Cancer Screening Trial, achieved an area under the curve (AUC) of 0.871 on a separate test set of 2,085 subjects and identified patients with high CVD mortality risks (AUC of 0.768). We validated our model against ECG-gated cardiac CT based markers, including coronary artery calcification (CAC) score, CAD-RADS score, and MESA 10-year risk score from an independent dataset of 335 subjects. Our work shows that, in high-risk patients, deep learning can convert LDCT for lung cancer screening into a dual-screening quantitative tool for CVD risk estimation.

قيم البحث

اقرأ أيضاً

A computer-aided detection (CAD) system for the identification of pulmonary nodules in low-dose multi-detector computed-tomography (CT) images has been developed in the framework of the MAGIC-5 Italian project. One of the main goals of this project i s to build a distributed database of lung CT scans in order to enable automated image analysis through a data and cpu GRID infrastructure. The basic modules of our lung-CAD system, consisting in a 3D dot-enhancement filter for nodule detection and a neural classifier for false-positive finding reduction, are described. The system was designed and tested for both internal and sub-pleural nodules. The database used in this study consists of 17 low-dose CT scans reconstructed with thin slice thickness (~300 slices/scan). The preliminary results are shown in terms of the FROC analysis reporting a good sensitivity (85% range) for both internal and sub-pleural nodules at an acceptable level of false positive findings (1-9 FP/scan); the sensitivity value remains very high (75% range) even at 1-6 FP/scan
Low dose computed tomography (LDCT) has attracted more and more attention in routine clinical diagnosis assessment, therapy planning, etc., which can reduce the dose of X-ray radiation to patients. However, the noise caused by low X-ray exposure degr ades the CT image quality and then affects clinical diagnosis accuracy. In this paper, we train a transformer-based neural network to enhance the final CT image quality. To be specific, we first decompose the noisy LDCT image into two parts: high-frequency (HF) and low-frequency (LF) compositions. Then, we extract content features (X_{L_c}) and latent texture features (X_{L_t}) from the LF part, as well as HF embeddings (X_{H_f}) from the HF part. Further, we feed X_{L_t} and X_{H_f} into a modified transformer with three encoders and decoders to obtain well-refined HF texture features. After that, we combine these well-refined HF texture features with the pre-extracted X_{L_c} to encourage the restoration of high-quality LDCT images with the assistance of piecewise reconstruction. Extensive experiments on Mayo LDCT dataset show that our method produces superior results and outperforms other methods.
Synchrotron-based X-ray computed tomography is widely used for investigating inner structures of specimens at high spatial resolutions. However, potential beam damage to samples often limits the X-ray exposure during tomography experiments. Proposed strategies for eliminating beam damage also decrease reconstruction quality. Here we present a deep learning-based method to enhance low-dose tomography reconstruction via a hybrid-dose acquisition strategy composed of extremely sparse-view normal-dose projections and full-view low-dose projections. Corresponding image pairs are extracted from low-/normal-dose projections to train a deep convolutional neural network, which is then applied to enhance full-view noisy low-dose projections. Evaluation on two experimental datasets under different hybrid-dose acquisition conditions show significantly improved structural details and reduced noise levels compared to uniformly distributed acquisitions with the same number of total dosage. The resulting reconstructions also preserve more structural information than reconstructions processed with traditional analytical and regularization-based iterative reconstruction methods from uniform acquisitions. Our performance comparisons show that our implementation, HDrec, can perform denoising of a real-world experimental data 410x faster than the state-of-the-art Xlearn method while providing better quality. This framework can be applied to other tomographic or scanning based X-ray imaging techniques for enhanced analysis of dose-sensitive samples and has great potential for studying fast dynamic processes.
134 - I. Gori , R. Bellotti , P. Cerello 2007
A computer-aided detection (CAD) system for the identification of pulmonary nodules in low-dose multi-detector helical Computed Tomography (CT) images with 1.25 mm slice thickness is presented. The basic modules of our lung-CAD system, a dot-enhancem ent filter for nodule candidate selection and a neural classifier for false-positive finding reduction, are described. The results obtained on the collected database of lung CT scans are discussed.
Tissue window filtering has been widely used in deep learning for computed tomography (CT) image analyses to improve training performance (e.g., soft tissue windows for abdominal CT). However, the effectiveness of tissue window normalization is quest ionable since the generalizability of the trained model might be further harmed, especially when such models are applied to new cohorts with different CT reconstruction kernels, contrast mechanisms, dynamic variations in the acquisition, and physiological changes. We evaluate the effectiveness of both with and without using soft tissue window normalization on multisite CT cohorts. Moreover, we propose a stochastic tissue window normalization (SWN) method to improve the generalizability of tissue window normalization. Different from the random sampling, the SWN method centers the randomization around the soft tissue window to maintain the specificity for abdominal organs. To evaluate the performance of different strategies, 80 training and 453 validation and testing scans from six datasets are employed to perform multi-organ segmentation using standard 2D U-Net. The six datasets cover the scenarios, where the training and testing scans are from (1) same scanner and same population, (2) same CT contrast but different pathology, and (3) different CT contrast and pathology. The traditional soft tissue window and nonwindowed approaches achieved better performance on (1). The proposed SWN achieved general superior performance on (2) and (3) with statistical analyses, which offers better generalizability for a trained model.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا