ﻻ يوجد ملخص باللغة العربية
Topological on-chip photonics based on tailored photonic crystals (PhC) that emulate quantum valley Hall effects has recently gained widespread interest due to its promise of robust unidirectional transport of classical and quantum information. We present a direct quantitative evaluation of topological photonic edge eigenstates and their transport properties in the telecom wavelength range using phase-resolved near-field optical microscopy. Experimentally visualizing the detailed sub-wavelength structure of these modes propagating along the interface between two topologically non-trivial mirror-symmetric lattices allows us to map their dispersion relation and differentiate between the contributions of several higher-order Bloch harmonics. Selective probing of forward and backward propagating modes as defined by their phase velocities enables a direct quantification of topological robustness. Studying near-field propagation in controlled defects allows to extract upper limits to topological protection in on-chip photonic systems in comparison to conventional PhC waveguides. We find that protected edge states are two orders of magnitude more robust as compared to conventional PhC waveguides. This direct experimental quantification of topological robustness comprises a crucial step towards the application of topologically protected guiding in integrated photonics, allowing for unprecedented error-free photonic quantum networks.
The driven dissipative nonlinear multimode photonic dimer is considered as the simplest case of solitons in photonic lattices. It supports a variety of emergent nonlinear phenomena including gear soliton generation, symmetry breaking and soliton hopp
We use split-ring resonators to demonstrate topologically protected edge states in the Su-Schieffer-Heeger model experimentally, but in a slow-light wave with the group velocity down to $sim 0.1$ of light speed in free space. A meta-material formed b
Topological spin liquids are robust quantum states of matter with long-range entanglement and possess many exotic properties such as the fractional statistics of the elementary excitations. Yet these states, short of local parameters like all topolog
We study fourfold rotation invariant gapped topological systems with time-reversal symmetry in two and three dimensions ($d=2,3$). We show that in both cases nontrivial topology is manifested by the presence of the $(d-2)$-dimensional edge states, ex
We experimentally demonstrate topological edge states arising from the valley-Hall effect in twodimensional honeycomb photonic lattices with broken inversion symmetry. We break inversion symmetry by detuning the refractive indices of the two honeycom