ﻻ يوجد ملخص باللغة العربية
A ring-shaped carbon allotrope was recently synthesized for the first time, reinvigorating theoretical interest in this class of molecules. The dual $pi$ structure of these molecules allows for the possibility of novel electronic properties. In this work we use reduced density matrix theory to study the electronic structure and conductivity of cyclo[18]carbon and its boron nitride analogue, Btextsubscript{9}Ntextsubscript{9}. The variational 2RDM method replicates the experimental polyynic geometry of cyclo[18]carbon. We use a current-constrained 1-electron reduced density matrix (1-RDM) theory with Hartree-Fock molecular orbitals and energies to compute the molecular conductance in two cases: (1) conductance in the plane of the molecule and (2) conductance around the molecular ring as potentially driven by a magnetic field through the molecules center. In-plane conductance is greater than conductance around the ring, but cyclo[18]carbon is slightly more conductive than Btextsubscript{9}Ntextsubscript{9} for both in-the-plane and in-the-ring conduction. The computed conductance per molecular orbital provides insight into how the orbitals---their energies and densities---drive the conduction.
We propose and investigate an exactly solvable model of non-equilibrium Luttinger liquid on a star graph, modeling a multi-terminal quantum wire junction. The boundary condition at the junction is fixed by an orthogonal matrix S, which describes the
The equation of state (EOS) of materials at warm dense conditions poses significant challenges to both theory and experiment. We report a combined computational, modeling, and experimental investigation leveraging new theoretical and experimental cap
We report the results of our numerical simulation of classical-dissipative dynamics of a charged particle subjected to a non-markovian stochastic forcing. We find that the system develops a steady-state orbital magnetic moment in the presence of a st
We present the first holographic simulations of non-equilibrium steady state formation in strongly coupled $mathcal{N}=4$ SYM theory in 3+1 dimensions. We initially join together two thermal baths at different temperatures and chemical potentials and
We reported the basal-plane thermal conductivity in exfoliated bilayer hexagonal boron nitride h-BN that was measured using suspended prepatterned microstructures. The h-BN sample suitable for thermal measurements was fabricated by dry-transfer metho