ترغب بنشر مسار تعليمي؟ اضغط هنا

Detection of a possible multiphase ultra-fast outflow in IRAS 13349+2438 with NuSTAR and XMM-Newton

418   0   0.0 ( 0 )
 نشر من قبل Michael Parker
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present joint NuSTAR and XMM-Newton observations of the bright, variable quasar IRAS 13349+2438. This combined dataset shows two clear iron absorption lines at 8 and 9 keV, which are most likely associated with two layers of mildly relativistic blueshifted absorption, with velocities of 0.14c and 0.27c. We also find strong evidence for a series of Ly$alpha$ absorption lines at intermediate energies in a stacked XMM-Newton EPIC-pn spectrum, at the same blueshift as the lower velocity iron feature. This is consistent with a scenario where an outflowing wind is radially stratified, so faster, higher ionization material is observed closer to the black hole, and cooler, slower material is seen from streamlines at larger radii.

قيم البحث

اقرأ أيضاً

We present an analysis of XMM-Newton spectra of the low-redshift quasar IRAS 13349+2438. The RGS spectrum shows a large number of absorption lines from two zones of warm absorption, with velocities of $sim$-600 km s$^{-1}$, as noted by previous autho rs. Additionally, we find robust evidence from multiple Ly{alpha} absorption lines for a previously undiscovered ultra-fast zone of absorption, with an outflow velocity of $-0.13pm0.01c$. The warm absorbers and ultra-fast outflow have similar mass outflow rates, around 40% of the Eddington accretion rate, but the kinetic power is dominated by the high velocity gas, which has a power of $sim$4% of the Eddington luminosity.
We present results from a deep, coordinated $XMM$-$Newton$+$NuSTAR$ observation of the Seyfert 2 galaxy IRAS 00521-7054. The $NuSTAR$ data provide the first detection of this source in high-energy X-rays ($E > 10$ keV), and the broadband data show th is to be a highly complex source which exhibits relativistic reflection from the inner accretion disc, further reprocessing by more distant material, neutral absorption, and evidence for ionised absorption in an extreme, ultrafast outflow ($v_{rm{out}} sim 0.4c$). Based on lamppost disc reflection models, we find evidence that the central supermassive black hole is rapidly rotating ($a > 0.77$), consistent with previous estimates from the profile of the relativistic iron line, and that the accretion disc is viewed at a fairly high inclination ($i sim 59^{circ}$). Based on extensive simulations, we find the ultrafast outflow is detected at $sim$4$sigma$ significance (or greater). We also estimate that the extreme outflow should be sufficient to power galaxy-scale feedback, and may even dominate the energetics of the total output from the system.
We present the spectral analysis of Chandra/HETGS and NuSTAR observations of the quasar PDS 456 from 2015, and XMM-Newton and NuSTAR archival data from 2013-2014, together with Chandra/HETGS data from 2003. We analyzed these three different epochs in a consistent way, looking for absorption features corresponding to highly ionized blueshifted absorption lines from H-like and He-like ions of iron (and nickel), as well as of other elements (O, Ne, Si, and S) in the soft band. We confirm the presence of a persistent ultra-fast outflow (UFO) with a velocity of v_out=-0.24 - -0.29c, previously detected. We also report the detection of an additional faster component of the UFO with a relativistic velocity of v_out=-0.48c. We implemented photoionization modeling, using XSTAR analytic model warmabs, to characterize the physical properties of the different kinematic components of the ultra-fast outflow and of the partial covering absorber detected in PDS 456. These two relativistic components of the ultra-fast outflow observed in the three epochs analyzed in this paper are powerful enough to impact the host galaxy of PDS 456 through AGN feedback.
We present results from a coordinated $XMM$-$Newton$+$NuSTAR$ observation of the type 1.8 Seyfert galaxy IRAS 13197-1627. This is a highly complex source, with strong contributions from relativistic reflection from the inner accretion disk, neutral a bsorption and further reprocessing by more distant material, and ionised absorption from an outflow. We undertake a detailed spectral analysis combining the broadband coverage provided by $XMM$-$Newton$+$NuSTAR$ with a multi-epoch approach incorporating archival observations performed by $XMM$-$Newton$ and $Suzaku$. Our focus is on characterising the reflection from the inner accretion disk, which previous works have suggested may dominate the AGN emission, and constraining the black hole spin. Using lamppost disk reflection models, we find that the results for the inner disk are largely insensitive to assumptions regarding the geometry of the distant reprocessor and the precise form of the illuminating X-ray continuum. However, these results do depend on the treatment of the iron abundance of the distant absorber/reprocessor. The multi-epoch data favour a scenario in which the AGN is chemically homogeneous, and we find that a rapidly rotating black hole is preferred, with $a^* geq 0.7$, but a slowly-rotating black hole is not strongly excluded. In addition to the results for the inner disk, we also find that both the neutral and ionised absorbers vary from epoch to epoch, implying that both have some degree of inhomogeneity in their structure.
Previous X-ray spectral analysis has revealed an increasing number of AGNs with high accretion rates where an outflow with a mildly relativistic velocity originates from the inner accretion disk. Here we report the detection of a new ultra-fast outfl ow (UFO) with a velocity of $v_{rm out}=0.319^{+0.005}_{-0.008}c$ in addition to a relativistic disk reflection component in a poorly studied NLS1 WKK~4438, based on archival ustar and suzaku observations. The spectra of both suzaku and ustar observations show an Fe~textsc{xxvi} absorption feature and the suzaku data also show evidence for an Ar~textsc{xviii} with the same blueshift. A super-solar argon abundance ($Z^{prime}_{rm Ar}>6Z_{odot}$) and a slight iron over-abundance ($Z^{prime}_{rm Fe}=2.6^{+1.9}_{-2.0}Z_{odot}$) are found in our spectral modelling. Based on Monte-Carlo simulations, the detection of the UFO is estimated to be around at 3$sigma$ significance. The fast wind most likely arises from a radius of $geq20r_g$ away from the central black hole. The disk is accreting at a high Eddington ratio ($L_{rm bol}=0.4-0.7L_{rm Edd}$). The mass outflow rate of the UFO is comparable with the disk mass inflow rate ($dot M_{rm out}>30%dot M_{rm in}$), assuming a maximum covering factor. The kinetic power of the wind might not be high enough to have influence in AGN feedback ($dot E_{rm wind}/L_{rm bol}approx 3-5%$) due to a relatively small column density ($12^{+9}_{-4}times10^{22}$~cm$^{-2}$). However note that both the inferred velocity and the column density could be lower limits owing to the low viewing angle ($i=23^{+3}_{-2}$$^{circ}$).
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا