ﻻ يوجد ملخص باللغة العربية
Proving local well-posedness for quasilinear problems in pdes presents a number of difficulties, some of which are universal and others of which are more problem specific. While a common standard, going back to Hadamard, has existed for a long time, there are by now both many variations and many misconceptions in the subject. The aim of these notes is to collect a number of both classical and more recent ideas in this direction, and to assemble them into a cohesive road map that can be then adapted to the readers problem of choice.
In this paper we consider the hyperbolic-elliptic Ishimori initial-value problem. We prove that such system is locally well-posed for small data in $H^{s}$ level space, for $s> 3/2$. The new ingredient is that we develop the methods of Ionescu and Ke
A reaction-diffusion equation with power nonlinearity formulated either on the half-line or on the finite interval with nonzero boundary conditions is shown to be locally well-posed in the sense of Hadamard for data in Sobolev spaces. The result is e
Considered herein is a multi-component Novikov equation, which admits bi-Hamiltonian structure, infinitely many conserved quantities and peaked solutions. In this paper, we deduce two blow-up criteria for this system and global existence for some two
In this paper, we are concerned with the motion of electrically conducting fluid governed by the two-dimensional non-isentropic viscous compressible MHD system on the half plane, with no-slip condition for velocity field, perfect conducting condition
In this paper we prove the local well-posedness (LWP) for the 3D compressible Euler equations describing the motion of a liquid in an unbounded initial domain with moving boundary. The liquid is under the influence of gravity but without surface tens