ترغب بنشر مسار تعليمي؟ اضغط هنا

Exact sequences on Worsey-Farin Splits

87   0   0.0 ( 0 )
 نشر من قبل Johnny Guzman
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We construct several smooth finite element spaces defined on three--dimensional Worsey--Farin splits. In particular, we construct $C^1$, $H^1(curl)$, and $H^1$-conforming finite element spaces and show the discrete spaces satisfy local exactness properties. A feature of the spaces is their low polynomial degree and lack of extrinsic supersmoothness at sub-simplices of the mesh. In the lowest order case, the last two spaces in the sequence consist of piecewise linear and piecewise constant spaces, and are suitable for the discretization of the (Navier-)Stokes equation.



قيم البحث

اقرأ أيضاً

We construct conforming finite element elasticity complexes on the Alfeld splits of tetrahedra. The complex consists of vector fields and symmetric tensor fields, interlinked via the linearized deformation operator, the linearized curvature operator, and the divergence operator, respectively. The construction is based on an algebraic machinery that derives the elasticity complex from de~Rham complexes, and smoother finite element differential forms.
We consider a scalar function depending on a numerical solution of an initial value problem, and its second-derivative (Hessian) matrix for the initial value. The need to extract the information of the Hessian or to solve a linear system having the H essian as a coefficient matrix arises in many research fields such as optimization, Bayesian estimation, and uncertainty quantification. From the perspective of memory efficiency, these tasks often employ a Krylov subspace method that does not need to hold the Hessian matrix explicitly and only requires computing the multiplication of the Hessian and a given vector. One of the ways to obtain an approximation of such Hessian-vector multiplication is to integrate the so-called second-order adjoint system numerically. However, the error in the approximation could be significant even if the numerical integration to the second-order adjoint system is sufficiently accurate. This paper presents a novel algorithm that computes the intended Hessian-vector multiplication exactly and efficiently. For this aim, we give a new concise derivation of the second-order adjoint system and show that the intended multiplication can be computed exactly by applying a particular numerical method to the second-order adjoint system. In the discussion, symplectic partitioned Runge--Kutta methods play an essential role.
112 - Song Lu , Xianmin Xu 2021
By improving the trace finite element method, we developed another higher-order trace finite element method by integrating on the surface with exact geometry description. This method restricts the finite element space on the volume mesh to the surfac e accurately, and approximates Laplace-Beltrami operator on the surface by calculating the high-order numerical integration on the exact surface directly. We employ this method to calculate the Laplace-Beltrami equation and the Laplace-Beltrami eigenvalue problem. Numerical error analysis shows that this method has an optimal convergence order in both problems. Numerical experiments verify the correctness of the theoretical analysis. The algorithm is more accurate and easier to implement than the existing high-order trace finite element method.
Recently developed concept of dissipative measure-valued solution for compressible flows is a suitable tool to describe oscillations and singularities possibly developed in solutions of multidimensional Euler equations. In this paper we study the con vergence of the first-order finite volume method based on the exact Riemann solver for the complete compressible Euler equations. Specifically, we derive entropy inequality and prove the consistency of numerical method. Passing to the limit, we show the weak and strong convergence of numerical solutions and identify their limit. The numerical results presented for the spiral, Kelvin-Helmholtz and the Richtmyer-Meshkov problem are consistent with our theoretical analysis.
This work introduces and studies a new family of velocity jump Markov processes directly amenable to exact simulation with the following two properties: i) trajectories converge in law when a time-step parameter vanishes towards a given Langevin or H amil-tonian dynamics; ii) the stationary distribution of the process is always exactly given by the product of a Gaussian (for velocities) by any target log-density whose gradient is pointwise computabe together with some additional explicit appropriate upper bound. The process does not exhibit any velocity reflections (jump sizes can be controlled) and is suitable for the factorization method. We provide a rigorous mathematical proof of: i) the small time-step convergence towards Hamiltonian/Langevin dynamics, as well as ii) the exponentially fast convergence towards the target distribution when suitable noise on velocity is present. Numerical implementation is detailed and illustrated.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا