ﻻ يوجد ملخص باللغة العربية
Due to the limitations of present-day quantum hardware, it is especially critical to design algorithms that make the best possible use of available resources. When simulating quantum many-body systems on a quantum computer, straightforward encodings that transform many-body Hamiltonians into qubit Hamiltonians use $N$ of the available basis states of an $N$-qubit system, whereas $2^N$ are in theory available. We explore an efficient encoding that uses the entire set of basis states, where terms in the Hamiltonian are mapped to qubit operators with a Hamiltonian that acts on the basis states in Gray code order. This encoding is applied to the commonly-studied problem of finding the ground state energy of a deuteron with a simulated variational quantum eigensolver (VQE). It is compared to a standard one-hot encoding, and various trade-offs that arise are analyzed. The energy distribution of VQE solutions has smaller variance than the one obtained by the one-hot encoding even in the presence of simulated hardware noise, despite an increase in the number of measurements. The reduced number of qubits and a shorter-depth variational ansatz enables the encoding of larger problems on current-generation machines. This encoding also demonstrates improvements for simulating time evolution of the same system, producing circuits for the evolution operators with reduced depth and roughly half the number of gates compared to a one-hot encoding.
We reformulate the continuous space Schrodinger equation in terms of spin Hamiltonians. For the kinetic energy operator, the critical concept facilitating the reduction in model complexity is the idea of position encoding. Binary encoding of position
In this paper, our aim is to propose a model for code abstraction, based on abstract interpretation, allowing us to improve the precision of a recently proposed static analysis by abstract interpretation of dynamic languages. The problem we tackle he
Simulation of fermionic many-body systems on a quantum computer requires a suitable encoding of fermionic degrees of freedom into qubits. Here we revisit the Superfast Encoding introduced by Kitaev and one of the authors. This encoding maps a target
The time-frequency degree of freedom is a powerful resource for implementing high-dimensional quantum information processing. In particular, field-orthogonal pulsed temporal modes offer a flexible framework compatible with both long-distance fibre ne
A Wilsonian approach to $pipi$ scattering based in the Glazek-Wilson Similarity Renormalization Group (SRG) for Hamiltonians is analyzed in momentum space up to a maximal CM energy of $sqrt{s}=1.4$ GeV. To this end, we identify the corresponding rela