ﻻ يوجد ملخص باللغة العربية
We investigate a sub-sample of the rotation curves consisting of 45 HSB non-bulgy spiral galaxies selected from SPARC (Spitzer Photometry and Accurate Rotation Curves) database by using two dark halo models (NFW and Burkert) and MOdified Newtonian Dynamics (MOND) theory. Among these three models, the core-dominated Burkert halo model provides a better description of the observed data ($chi_{ u}^2$ = 0.33) than Navarro, Frenk and White (NFW, $chi_{ u}^2$= 0.45) and MOND model ($chi_{ u}^2$ = 0.58). So our results show that, for dark halo models, the selected 45 HSB non-bulgy spiral galaxies prefer a cored density profile to the cuspy one (NFW); We also positively find that there is a correlation between $rho_0$ and $r_0$ in Burkert model. For MOND fits, when we take $a_0$ as a free parameter, there is no obvious correlation between $a_0$ and disk central surface brightness at 3.6 $mu m$ of these HSB spiral galaxies, which is in line with the basic assumption of MOND that $a_0$ should be a universal constant. Interestingly, our fittings gives $a_0$ an average value of $(0.74 pm 0.45) times 10^{- 8}rm {cm s^{- 2}}$ if we exclude the three highest values in the sample, which is smaller than the standard value ($1.21 times 10^{-8}rm {cm s^{- 2}}$).
We introduce SPARC (Spitzer Photometry & Accurate Rotation Curves): a sample of 175 nearby galaxies with new surface photometry at 3.6 um and high-quality rotation curves from previous HI/Halpha studies. SPARC spans a broad range of morphologies (S0
Dark matter-baryon scaling relations in galaxies are important in order to constrain galaxy formation models. Here, we provide a modern quantitative assessment of those relations, by modelling the rotation curves of galaxies from the Spitzer Photomet
We present rotation curve fits to 175 late-type galaxies from the Spitzer Photometry & Accurate Rotation Curves (SPARC) database using seven dark matter (DM) halo profiles: pseudo-isothermal (pISO), Burkert, Navarro-Frenk-White (NFW), Einasto, Di Cin
We study the kinematics and scaling relations of a sample of 43 giant spiral galaxies that have stellar masses exceeding $10^{11}$ $M_odot$ and optical discs up to 80 kpc in radius. We use a hybrid 3D-1D approach to fit 3D kinematic models to long-sl
Dark Matter (DM) and Modified Newtonian Dynamics (MOND) models of rotationally supported galaxies lead to curves with different geometries in $(g_{N},g_{tot})$-space ($g2$-space). Here $g_{tot}$ is the total acceleration and $g_{N}$ is the accelerati