ﻻ يوجد ملخص باللغة العربية
With new experimental information on nuclei far from stability being available, a systematic investigation of excitation energies and electromagnetic properties along the $N=10, 11, 12$ isotones and $Z=10, 11, 12$ isotopes is presented. The experimental data are discussed in the context of the appearance and disappearance of shell closures at $N=Z=8,14,16,20$, and compared to an effective-interaction approach applied to neutrons and protons in $d_{5/2}^{2,3,4}$ configurations. In spite of its simplicity the model is able to explain the observed properties.
The strong nuclear interaction between nucleons (protons and neutrons) is the effective force that holds the atomic nucleus together. This force stems from fundamental interactions between quarks and gluons (the constituents of nucleons) that are des
We report on the results of the E06-014 experiment performed at Jefferson Lab in Hall A, where a precision measurement of the twist-3 matrix element $d_2$ of the neutron ($d_{2}^{n}$) was conducted. This quantity represents the average color Lorentz
A survey of the available single-proton data in $Aleq17$ nuclei, along with calculations using a Woods-Saxon potential, show that the ordering of the $0d_{5/2}$ and $1s_{1/2}$ proton orbitals are determined primarily by the proximity of the $s$-state
We have determined the transparency of the nuclear medium to kaons from $A(e,e^{} K^{+})$ measurements on $^{12}$C, $^{63}$Cu, and $^{197}$Au targets. The measurements were performed at the Jefferson Laboratory and span a range in four-momentum-trans
The higher-spin structure of $^{38}$Cl ($N = 21$) was investigated following the $^{26}$Mg($^{14}$C, $pn$) reaction at 30 and 37 MeV beam energies. The outgoing protons were detected in an $E- Delta E$ Si telescope placed at 0$^circ$ close to the tar