ترغب بنشر مسار تعليمي؟ اضغط هنا

Threshold pion electro- and photoproduction off nucleons in covariant chiral perturbation theory

76   0   0.0 ( 0 )
 نشر من قبل Gustavo H Guerrero Navarro
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Pion electro- and photoproduction off the nucleon close to threshold is studied in covariant baryon chiral perturbation theory at O($p^3$) in the extended-on-mass-shell scheme, with the explicit inclusion of the $Delta(1232)$ resonance. The relevant low energy constants are fixed by fitting the available experimental data with the theoretical model. The inclusion of the $Delta$ resonance as an explicit degree of freedom substantially improves the agreement with data and the convergence of the model.


قيم البحث

اقرأ أيضاً

Weak pion production off the nucleon at low energies has been systematically investigated in manifestly relativistic baryon chiral perturbation theory with explicit inclusion of the $Delta$(1232) resonance. Most of the involved low-energy constants h ave been previously determined in other processes such as pion-nucleon elastic scattering and electromagnetic pion production off the nucleon. For numerical estimates, the few remaining constants are set to be of natural size. As a result, the total cross sections for single pion production on neutrons and protons, induced either by neutrino or antineutrino, are predicted. Our results are consistent with the scarce existing experimental data except in the $ u_mu nto mu^-npi^+$ channel, where higher-order contributions might still be significant. The $Delta$ resonance mechanisms lead to sizeable contributions in all channels, especially in $ u_mu pto mu^- ppi^+$, even though the considered energies are close to the production threshold. The present study provides a well founded low-energy benchmark for phenomenological models aimed at the description of weak pion production processes in the broad kinematic range of interest for current and future neutrino-oscillation experiments.
Neutral current single pion production induced by neutrinos and antineutrinos on nucleon targets has been investigated in manifestly relativistic baryon chiral perturbation theory with explicit $Delta(1232)$ degrees of freedom up to $mathcal{O}(p^3)$ . At low energies, where chiral perturbation theory is applicable, the total cross sections for the different reaction channels exhibit a sizable non-resonant contribution, which is not present in event generators of broad use in neutrino oscillation and cross section experiments such as GENIE and NuWro.
58 - Bengt Friman 1996
We propose a simple meson-exchange model of the photoproduction of $rho$- and $omega$-mesons off protons near threshold ($E_gamma$ less than 2 GeV). This model provides a good description of the available data and implies a large $rho$-nucleon intera ction in the scalar channel ($sigma$-exchange). We use this phenomenological interaction to estimate the leading contribution to the self-energy of $rho$-mesons in matter. The implications of our calculation for experimental studies of the $rho$-meson mass in nuclei are discussed.
In this paper, we consider two-flavor QCD at zero temperature and finite isospin chemical potential ($mu_I$) using a model-independent analysis within chiral perturbation theory at next-to-leading order. We calculate the effective potential, the chir al condensate and the pion condensate in the pion-condensed phase at both zero and nonzero pionic source. We compare our finite pionic source results for the chiral condensate and the pion condensate with recent (2+1)-flavor lattice QCD results and find that they are in excellent agreement.
Employing the covariant baryon chiral perturbation theory, we calculate the leading and next-to-leading order two-pion exchange (TPE) contributions to $NN$ interaction up to order $O(p^3)$. We compare the so-obtained $NN$ phase shifts with $2leq Lleq 6$ and mixing angles with $2leq Jleq6$ with those obtained in the nonrelativistic baryon chiral perturbation theory, which allows us to check the relativistic corrections to the medium-range part of $NN$ interactions. We show that the contributions of relativistic TPE are more moderate than those of the nonrelativistic TPE. The relativistic corrections play an important role in F-waves especially the $^3text{F}_2$ partial wave. Moreover, the relativistic results seem to converge faster than the nonrelativistic results in almost all the partial waves studied in the present work, consistent with the studies performed in the one-baryon sector.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا