ترغب بنشر مسار تعليمي؟ اضغط هنا

Measurements of the induced polarization in the quasi-elastic $A(e,evec p,)$ process in non-coplanar kinematics

86   0   0.0 ( 0 )
 نشر من قبل Sebouh Paul
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We report measurements of the induced polarization $vec P$ of protons knocked out from $^2$H and $^{12}$C via the $A(e,evec p,)$ reaction. We have studied the dependence of $vec P$ on two kinematic variables: the missing momentum $p_{rm miss}$ and the off-coplanarity angle $phi_{pq}$ between the scattering and reaction planes. For the full 360$degree$ range in $phi_{pq}$, both the normal ($P_y$) and, for the first time, the transverse ($P_x$) components of the induced polarization were measured with respect to the coordinate system associated with the scattering plane. $P_x$ vanishes in coplanar kinematics, however in non-coplanar kinematics, it is on the same scale as $P_y$. We find that the dependence on $phi_{pq}$ is sine-like for $P_x$ and cosine-like for $P_y$. For carbon, the magnitude of the induced polarization is especially large when protons are knocked out from the $p_{3/2}$ shell at very small $p_{rm miss}$. For the deuteron, the induced polarization is near zero at small $|p_{rm miss}|$, and its magnitude increases with $|p_{rm miss}|$. For both nuclei such behavior is reproduced qualitatively by theoretical results, driven largely by the spin-orbit part of the final-state interactions. However, for both nuclei, sizeable discrepancies exist between experiment and theory.



قيم البحث

اقرأ أيضاً

We present measurements of the electron helicity asymmetry in quasi-elastic proton knockout from $^{2}$H and $^{12}$C nuclei by polarized electrons. This asymmetry depends on the fifth structure function, is antisymmetric with respect to the scatteri ng plane, and vanishes in the absence of final-state interactions, and thus it provides a sensitive tool for their study. Our kinematics cover the full range in off-coplanarity angle $phi_{pq}$, with a polar angle $theta_{pq}$ coverage up to about 8 degrees. The missing energy resolution enabled us to determine the asymmetries for knock-out resulting in different states of the residual $^{11}$B system. We find that the helicity asymmetry for $p$-shell knockout from $^{12}$C depends on the final state of the residual system and is relatively large (up to $approx 0.16$), especially at low missing momentum. It is considerably smaller (up to $approx 0.01$) for $s$-shell knockout from both $^{12}$C and $^2$H. The data for $^2$H are in very good agreement with theoretical calculations, while the predictions for $^{12}$C exhibit differences with respect to the data.
The first measurements of the induced proton polarization, P_n, for the 12C (e,evec{p}) reaction are reported. The experiment was performed at quasifree kinematics for energy and momentum transfer (omega,q) approx (294 MeV, 756 MeV/c) and sampled a r ecoil momentum range of 0-250 MeV/c. The induced polarization arises from final-state interactions and for these kinematics is dominated by the real part of the spin-orbit optical potential. The distorted-wave impulse approximation provides good agreement with data for the 1p_{3/2} shell. The data for the continuum suggest that both the 1s_{1/2} shell and underlying l > 1 configurations contribute.
We present measurements of the polarization-transfer components in the $^2$H$(vec e,evec p)$ reaction, covering a previously unexplored kinematic region with large positive (anti-parallel) missing momentum, $p_{rm miss}$, up to 220 MeV$/c$, and $Q^2= 0.65$ $({rm GeV}/c)^2$. These measurements, performed at the Mainz Microtron (MAMI), were motivated by theoretical calculations which predict small final-state interaction (FSI) effects in these kinematics, making them favorable for searching for medium modifications of bound nucleons in nuclei. We find in this kinematic region that the measured polarization-transfer components $P_x$ and $P_z$ and their ratio agree with the theoretical calculations, which use free-proton form factors. Using this, we establish upper limits on possible medium effects that modify the bound protons form factor ratio $G_E/G_M$ at the level of a few percent. We also compare the measured polarization-transfer components and their ratio for $^2$H to those of a free (moving) proton. We find that the universal behavior of $^2$H, $^4$He and $^{12}$C in the double ratio $frac{(P_x/P_z)^A}{(P_x/P_z)^{^1rm H}}$ is maintained in the positive missing-momentum region.
We report on a precise measurement of double-polarization asymmetries in electron-induced breakup of $^3mathrm{He}$ proceeding to $mathrm{pd}$ and $mathrm{ppn}$ final states, performed in quasi-elastic kinematics at $Q^2 = 0.25,(mathrm{GeV}/c)^2$ for missing momenta up to $250,mathrm{MeV}/c$. These observables represent highly sensitive tools to investigate the electromagnetic and spin structure of $^3mathrm{He}$ and the relative importance of two- and three-body effects involved in the breakup reaction dynamics. The measured asymmetries cannot be satisfactorily reproduced by state-of-the-art calculations of $^3mathrm{He}$ unless their three-body segment is adjusted, indicating that the spin-dependent part of the nuclear interaction governing the three-body breakup process is much smaller than previously thought.
We present a precise measurement of double-polarization asymmetries in the $^3vec{mathrm{He}}(vec{mathrm{e}},mathrm{e}mathrm{d})$ reaction. This particular process is a uniquely sensitive probe of hadron dynamics in $^3mathrm{He}$ and the structure o f the underlying electromagnetic currents. The measurements have been performed in and around quasi-elastic kinematics at $Q^2 = 0.25,(mathrm{GeV}/c)^2$ for missing momenta up to $270,mathrm{MeV}/c$. The asymmetries are in fair agreement with the state-of-the-art calculations in terms of their functional dependencies on $p_mathrm{m}$ and $omega$, but are systematically offset. Beyond the region of the quasi-elastic peak, the discrepancies become even more pronounced. Thus, our measurements have been able to reveal deficiencies in the most sophisticated calculations of the three-body nuclear system, and indicate that further refinement in the treatment of their two- and/or three-body dynamics is required.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا