ﻻ يوجد ملخص باللغة العربية
This work presents a unified dissipaton-equation-of-motion (DEOM) theory and its evaluations on the Helmholtz free energy change due to the isotherm mixing of two isolated subsystems. One is a local impurity and another is a nonlocal Gaussian bath. DEOM constitutes a fundamental theory for such open quantum mixtures. To complete the theory, we construct also the imaginary-time DEOM formalism via an analytical continuation of dissipaton algebra, which would be limited to equilibrium thermodynamics. On the other hand, the real-time DEOM deals with both equilibrium structural and nonequilibrium dynamic properties. Its combination with the thermodynamic integral formalism would be a viable and accurate means to both equilibrium and transient thermodynamics. As illustrations, we report the numerical results on a spin--boson system, with elaborations on the underlying anharmonic features, the thermodynamic entropy versus the von Neumann entropy, and an indication of solvent-cage formation. Beside the required asymptotic equilibrium properties, the proposed transient thermodynamics also supports the basic spontaneity criterion.
We develop the stochastic approach to thermodynamics based on the stochastic dynamics, which can be discrete (master equation) continuous (Fokker-Planck equation), and on two assumptions concerning entropy. The first is the definition of entropy itse
Non-equilibrium processes in Schottky systems generate by projection onto the equilibrium subspace reversible accompanying processes for which the non-equilibrium variables are functions of the equilibrium ones. The embedding theorem which guarantees
We show how classical and quantum dualities, as well as duality relations that appear only in a sector of certain theories (emergent dualities), can be unveiled, and systematically established. Our method relies on the use of morphisms of the bond al
We present the closed loop approach to linear nonequilibrium thermodynamics considering a generic heat engine dissipatively connected to two temperature baths. The system is usually quite generally characterized by two parameters: the output power $P
We combine the shear-transformation-zone (STZ) theory of amorphous plasticity with Edwards statistical theory of granular materials to describe shear flow in a disordered system of thermalized hard spheres. The equations of motion for this system are