ترغب بنشر مسار تعليمي؟ اضغط هنا

Equilibrium and transient thermodynamics: A unified dissipaton-space approach

98   0   0.0 ( 0 )
 نشر من قبل Yao Wang
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

This work presents a unified dissipaton-equation-of-motion (DEOM) theory and its evaluations on the Helmholtz free energy change due to the isotherm mixing of two isolated subsystems. One is a local impurity and another is a nonlocal Gaussian bath. DEOM constitutes a fundamental theory for such open quantum mixtures. To complete the theory, we construct also the imaginary-time DEOM formalism via an analytical continuation of dissipaton algebra, which would be limited to equilibrium thermodynamics. On the other hand, the real-time DEOM deals with both equilibrium structural and nonequilibrium dynamic properties. Its combination with the thermodynamic integral formalism would be a viable and accurate means to both equilibrium and transient thermodynamics. As illustrations, we report the numerical results on a spin--boson system, with elaborations on the underlying anharmonic features, the thermodynamic entropy versus the von Neumann entropy, and an indication of solvent-cage formation. Beside the required asymptotic equilibrium properties, the proposed transient thermodynamics also supports the basic spontaneity criterion.



قيم البحث

اقرأ أيضاً

We develop the stochastic approach to thermodynamics based on the stochastic dynamics, which can be discrete (master equation) continuous (Fokker-Planck equation), and on two assumptions concerning entropy. The first is the definition of entropy itse lf and the second, the definition of entropy production rate which is nonnegative and vanishes in thermodynamic equilibrium. Based on these assumptions we study interacting systems with many degrees of freedom in equilibrium or out of thermodynamic equilibrium, and how the macroscopic laws are derived from the stochastic dynamics. These studies include the quasi-equilibrium processes, the convexity of the equilibrium surface, the monotonic time behavior of thermodynamic potentials, including entropy, the bilinear form of the entropy production rate, the Onsager coefficients and reciprocal relations, and the nonequilibrium steady states of chemical reactions.
92 - Wolfgang Muschik 2020
Non-equilibrium processes in Schottky systems generate by projection onto the equilibrium subspace reversible accompanying processes for which the non-equilibrium variables are functions of the equilibrium ones. The embedding theorem which guarantees the compatibility of the accompanying processes with the non-equilibrium entropy is proved. The non-equilibrium entropy is defined as a state function on the non-equilibrium state space containing the contact temperature as a non-equilibrium variable. If the entropy production does not depend on the internal energy, the contact temperature changes into the thermostatic temperature also in non-equilibrium, a fact which allows to use temperature as a primitive concept in non-equilibrium. The dissipation inequality is revisited, and an efficiency of generalized cyclic processes beyond the Carnot process is achieved.
178 - E. Cobanera , 2009
We show how classical and quantum dualities, as well as duality relations that appear only in a sector of certain theories (emergent dualities), can be unveiled, and systematically established. Our method relies on the use of morphisms of the bond al gebra of a quantum Hamiltonian. Dualities are characterized as unitary mappings implementing such morphisms, whose even powers become symmetries of the quantum problem. Dual variables -which were guessed in the past- can be derived in our formalism. We obtain new self-dualities for four-dimensional Abelian gauge field theories.
We present the closed loop approach to linear nonequilibrium thermodynamics considering a generic heat engine dissipatively connected to two temperature baths. The system is usually quite generally characterized by two parameters: the output power $P $ and the conversion efficiency $eta$, to which we add a third one, the working frequency $omega$. We establish that a detailed understanding of the effects of the dissipative coupling on the energy conversion process, necessitates the knowledge of only two quantities: the systems feedback factor $beta$ and its open-loop gain $A_{0}$, the product of which, $A_{0}beta$, characterizes the interplay between the efficiency, the output power and the operating rate of the system. By placing thermodynamics analysis on a higher level of abstraction, the feedback loop approach provides a versatile and economical, hence a very efficient, tool for the study of emph{any} conversion engine operation for which a feedback factor may be defined.
We combine the shear-transformation-zone (STZ) theory of amorphous plasticity with Edwards statistical theory of granular materials to describe shear flow in a disordered system of thermalized hard spheres. The equations of motion for this system are developed within a statistical thermodynamic framework analogous to that which has been used in the analysis of molecular glasses. For hard spheres, the system volume $V$ replaces the internal energy $U$ as a function of entropy $S$ in conventional statistical mechanics. In place of the effective temperature, the compactivity $X = partial V / partial S$ characterizes the internal state of disorder. We derive the STZ equations of motion for a granular material accordingly, and predict the strain rate as a function of the ratio of the shear stress to the pressure for different values of a dimensionless, temperature-like variable near a jamming transition. We use a simplified version of our theory to interpret numerical simulations by Haxton, Schmiedeberg and Liu, and in this way are able to obtain useful insights about internal rate factors and relations between jamming and glass transitions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا