ترغب بنشر مسار تعليمي؟ اضغط هنا

Performance Analysis of Priority-Aware NoCs with Deflection Routing under Traffic Congestion

173   0   0.0 ( 0 )
 نشر من قبل Sumit Mandal
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Priority-aware networks-on-chip (NoCs) are used in industry to achieve predictable latency under different workload conditions. These NoCs incorporate deflection routing to minimize queuing resources within routers and achieve low latency during low traffic load. However, deflected packets can exacerbate congestion during high traffic load since they consume the NoC bandwidth. State-of-the-art analytical models for priority-aware NoCs ignore deflected traffic despite its significant latency impact during congestion. This paper proposes a novel analytical approach to estimate end-to-end latency of priority-aware NoCs with deflection routing under bursty and heavy traffic scenarios. Experimental evaluations show that the proposed technique outperforms alternative approaches and estimates the average latency for real applications with less than 8% error compared to cycle-accurate simulations.

قيم البحث

اقرأ أيضاً

Networks-on-Chip (NoCs) used in commercial many-core processors typically incorporate priority arbitration. Moreover, they experience bursty traffic due to application workloads. However, most state-of-the-art NoC analytical performance analysis tech niques assume fair arbitration and simple traffic models. To address these limitations, we propose an analytical modeling technique for priority-aware NoCs under bursty traffic. Experimental evaluations with synthetic and bursty traffic show that the proposed approach has less than 10% modeling error with respect to cycle-accurate NoC simulator.
Fast and accurate performance analysis techniques are essential in early design space exploration and pre-silicon evaluations, including software eco-system development. In particular, on-chip communication continues to play an increasingly important role as the many-core processors scale up. This paper presents the first performance analysis technique that targets networks-on-chip (NoCs) that employ weighted round-robin (WRR) arbitration. Besides fairness, WRR arbitration provides flexibility in allocating bandwidth proportionally to the importance of the traffic classes, unlike basic round-robin and priority-based arbitration. The proposed approach first estimates the effective service time of the packets in the queue due to WRR arbitration. Then, it uses the effective service time to compute the average waiting time of the packets. Next, we incorporate a decomposition technique to extend the analytical model to handle NoC of any size. The proposed approach achieves less than 5% error while executing real applications and 10% error under challenging synthetic traffic with different burstiness levels.
We present a congestion-aware routing solution for indoor evacuation, which produces real-time individual-customized evacuation routes among multiple destinations while keeping tracks of all evacuees locations. A population density map, obtained on-t he-fly by aggregating locations of evacuees from user-end Augmented Reality (AR) devices, is used to model the congestion distribution inside a building. To efficiently search the evacuation route among all destinations, a variant of A* algorithm is devised to obtain the optimal solution in a single pass. In a series of simulated studies, we show that the proposed algorithm is more computationally optimized compared to classic path planning algorithms; it generates a more time-efficient evacuation route for each individual that minimizes the overall congestion. A complete system using AR devices is implemented for a pilot study in real-world environments, demonstrating the efficacy of the proposed approach.
Simulations and runtime measurements are some of the methods which can be used to evaluate whether a given NoC-based platform can accommodate application workload and fulfil its timing requirements. Yet, these techniques are often time-consuming, and hence can evaluate only a limited set of scenarios. Therefore, these approaches are not suitable for safety-critical and hard real-time systems, where one of the fundamental requirements is to provide strong guarantees that all timing requirements will always be met, even in the worst-case conditions. For such systems the analytic-based real-time analysis is the only viable approach. In this paper the focus is on the real-time communication analysis for wormhole-switched priority-preemptive NoCs. First, we elaborate on the existing analysis and identify one source of pessimism. Then, we propose an extension to the analysis, which efficiently overcomes this limitation, and allows for a less pessimistic analysis. Finally, through a comprehensive experimental evaluation, we compare the newly proposed approach against the existing one, and also observe how the trends change with different traffic parameters.
The key to speeding up applications is often understanding where the elapsed time is spent, and why. This document reviews in depth the full array of performance analysis tools and techniques available on Linux for this task, from the traditional too ls like gcov and gprof, to the more advanced tools still under development like oprofile and the Linux Trace Toolkit. The focus is more on the underlying data collection and processing algorithms, and their overhead and precision, than on the cosmetic details of the graphical user interface frontends.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا