ترغب بنشر مسار تعليمي؟ اضغط هنا

Quantum Many-Body Simulations of the 2D Fermi-Hubbard Model in Ultracold Optical Lattices

134   0   0.0 ( 0 )
 نشر من قبل Bin-Bin Chen
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Understanding quantum many-body states of correlated electrons is one main theme in modern condensed matter physics. Given that the Fermi-Hubbard model, the prototype of correlated electrons, has been recently realized in ultracold optical lattices, it is highly desirable to have controlled numerical methodology to provide precise finite-temperature results upon doping, to directly compare with experiments. Here, we demonstrate the exponential tensor renormalization group (XTRG) algorithm [Phys. Rev. X 8, 031082 (2018)], complemented with independent determinant quantum Monte Carlo (DQMC) offer a powerful combination of tools for this purpose. XTRG provides full and accurate access to the density matrix and thus various spin and charge correlations, down to unprecedented low temperature of few percents of the fermion tunneling energy scale. We observe excellent agreement with ultracold fermion measurements at both half-filling and finite-doping, including the sign-reversal behavior in spin correlations due to formation of magnetic polarons, and the attractive hole-doublon and repulsive hole-hole pairs that are responsible for the peculiar bunching and antibunching behavior of the antimoments.



قيم البحث

اقرأ أيضاً

We study the phase diagram of the two-dimensional repulsive Hubbard model with spin-dependent anisotropic hopping at half-filling. The system develops Ising antiferromagnetic long-range order already at infinitesimal repulsive interaction strength in the ground state. Outside the perturbative regime, unbiased predictions for the critical temperatures of the Ising antiferromagnet are made for representative interaction values by a variety of state-of-the-art quantum Monte Carlo methods, including the diagrammatic Monte Carlo, continuous-time determinantal Monte Carlo and path-integral Monte Carlo methods. Our findings are relevant to ultracold atom experiments in the p-orbital or with spin-dependent optical lattices.
We numerically investigate 1D Bose-Hubbard chains with onsite disorder by means of exact diagonalization. A primary focus of our work is on characterizing Fock-space localization in this model from the single-particle perspective. For this purpose, w e compute the one-particle density matrix (OPDM) in many-body eigenstates. We show that the natural orbitals (the eigenstates of the OPDM) are extended in the ergodic phase and real-space localized when one enters into the MBL phase. Furthermore, the distributions of occupations of the natural orbitals can be used as measures of Fock-space localization in the respective basis. Consistent with previous studies, we observe signatures of a transition from the ergodic to the many-body localized (MBL) regime when increasing the disorder strength. We further demonstrate that Fock-space localization, albeit weaker, is also evidently present in the distribution of the physical densities in the MBL regime, both for soft- and hardcore bosons. Moreover, the full distribution of the densities of the physical particles provides a one-particle measure for the detection of the ergodic-MBL transition which could be directly accessed in experiments with ultra-cold gases.
78 - S. Moukouri , S. Allen , F. Lemay 1999
The opening of a critical-fluctuation induced pseudogap (or precursor pseudogap) in the one-particle spectral weight of the half-filled two-dimensional Hubbard model is discussed. This pseudogap, appearing in our Monte Carlo simulations, may be obtai ned from many-body techniques that use Green functions and vertex corrections that are at the same level of approximation. Self-consistent theories of the Eliashberg type (such as the Fluctuation Exchange Approximation) use renormalized Green functions and bare vertices in a context where there is no Migdal theorem. They do not find the pseudogap, in quantitative and qualitative disagreement with simulations, suggesting these methods are inadequate for this problem. Differences between precursor pseudogaps and strong-coupling pseudogaps are also discussed.
Over the last several years, a new generation of quantum simulations has greatly expanded our understanding of charge density wave phase transitions in Hamiltonians with coupling between local phonon modes and the on-site charge density. A quite diff erent, and interesting, case is one in which the phonons live on the bonds, and hence modulate the electron hopping. This situation, described by the Su-Schrieffer-Heeger (SSH) Hamiltonian, has so far only been studied with quantum Monte Carlo in one dimension. Here we present results for the 2D SSH model, and show that a bond ordered wave (BOW) insulator is present in the ground state at half-filling, and argue that a critical value of the electron-phonon coupling is required for its onset, in contradistinction with the 1D case where BOW exists for any nonzero coupling. We determine the precise nature of the bond ordering pattern, which has hitherto been controversial, and the critical transition temperature, which is associated with a spontaneous breaking of ${cal Z}_4$ symmetry.
The nonequilibrium variational-cluster approach is applied to study the real-time dynamics of the double occupancy in the one-dimensional Fermi-Hubbard model after different fast changes of hopping parameters. A simple reference system, consisting of isolated Hubbard dimers, is used to discuss different aspects of the numerical implementation of the approach in the general framework of nonequilibrium self-energy functional theory. Opposed to a direct solution of the Euler equation, its time derivative is found to serve as numerically tractable and stable conditional equation to fix the time-dependent variational parameters.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا