ﻻ يوجد ملخص باللغة العربية
Understanding quantum many-body states of correlated electrons is one main theme in modern condensed matter physics. Given that the Fermi-Hubbard model, the prototype of correlated electrons, has been recently realized in ultracold optical lattices, it is highly desirable to have controlled numerical methodology to provide precise finite-temperature results upon doping, to directly compare with experiments. Here, we demonstrate the exponential tensor renormalization group (XTRG) algorithm [Phys. Rev. X 8, 031082 (2018)], complemented with independent determinant quantum Monte Carlo (DQMC) offer a powerful combination of tools for this purpose. XTRG provides full and accurate access to the density matrix and thus various spin and charge correlations, down to unprecedented low temperature of few percents of the fermion tunneling energy scale. We observe excellent agreement with ultracold fermion measurements at both half-filling and finite-doping, including the sign-reversal behavior in spin correlations due to formation of magnetic polarons, and the attractive hole-doublon and repulsive hole-hole pairs that are responsible for the peculiar bunching and antibunching behavior of the antimoments.
We study the phase diagram of the two-dimensional repulsive Hubbard model with spin-dependent anisotropic hopping at half-filling. The system develops Ising antiferromagnetic long-range order already at infinitesimal repulsive interaction strength in
We numerically investigate 1D Bose-Hubbard chains with onsite disorder by means of exact diagonalization. A primary focus of our work is on characterizing Fock-space localization in this model from the single-particle perspective. For this purpose, w
The opening of a critical-fluctuation induced pseudogap (or precursor pseudogap) in the one-particle spectral weight of the half-filled two-dimensional Hubbard model is discussed. This pseudogap, appearing in our Monte Carlo simulations, may be obtai
Over the last several years, a new generation of quantum simulations has greatly expanded our understanding of charge density wave phase transitions in Hamiltonians with coupling between local phonon modes and the on-site charge density. A quite diff
The nonequilibrium variational-cluster approach is applied to study the real-time dynamics of the double occupancy in the one-dimensional Fermi-Hubbard model after different fast changes of hopping parameters. A simple reference system, consisting of