ترغب بنشر مسار تعليمي؟ اضغط هنا

Abell 30 -- A Binary Central Star Among the Born-Again Planetary Nebulae

158   0   0.0 ( 0 )
 نشر من قبل David Jones
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Eight planetary nebulae have been identified as `born-again, a class of object typified by knotty secondary ejecta having low masses ($sim$$10^{-4}$ M$_{odot}$) with nearly no hydrogen. Abell 30, the archetype of the class, also belongs to a small subset of planetary nebulae that exhibit extreme abundance discrepancy factors (where Abell 30 is the most extreme), a phenomenon strongly linked to binary star interactions. We report the presence of light curve brightness variations having a period of 1.060 days that are highly suggestive of a binary central star in Abell 30. If confirmed, this detection supports the proposed link between binary central stars and extreme abundance discrepancies.

قيم البحث

اقرأ أيضاً

75 - S. Kimeswenger 2008
While in the past spherodicity was assumed, and still is used in modeling of most nebulae, we know now that only a small number of planetary nebulae (PNe) are really spherical or at least nearly round. Round planetary nebulae are the minority of obje cts. In the case of those objects that underwent a very late helium flash (called VLTP objects or ``born-again PNe) it seems to be different. The first, hydrogen-rich PN, is more or less round. The ejecta from the VLTP event, in contrast, are extremely asymmetrical.
Planetary nebulae are ionized clouds of gas formed by the hydrogen-rich envelopes of low- and intermediate-mass stars ejected at late evolutionary stages. The strong UV flux from their central stars causes a highly stratified ionization structure, wi th species of higher ionization potential closer to the star. Here we report on the exceptional case of HuBi 1, a double-shell planetary nebula whose inner shell presents emission from low-ionization species close to the star and emission from high-ionization species farther away. Spectral analysis demonstrates that the inner shell of HuBi 1 is excited by shocks, whereas its outer shell is recombining. The anomalous excitation of these shells can be traced to its low-temperature [WC10] central star whose optical brightness has declined continuously by 10 magnitudes in a period of 46 years. Evolutionary models reveal that this star is the descendent of a low-mass star ($simeq$1.1 $M_odot$) that has experienced a born-again event whose ejecta shock-excite the inner shell. HuBi 1 represents the missing link in the formation of metal-rich central stars of planetary nebulae from low-mass progenitors, offering unique insight regarding the future evolution of the born-again Sakurais object. Coming from a solar-mass progenitor, HuBi 1 represents a potential end-state for our Sun.
We present the first detailed spatio-kinematical analysis and modelling of the planetary nebula Abell 41, which is known to contain the well-studied close-binary system MT Ser. This object represents an important test case in the study of the evoluti on of planetary nebulae with binary central stars as current evolutionary theories predict that the binary plane should be aligned perpendicular to the symmetry axis of the nebula. Deep narrowband imaging in the light of [NII], [OIII] and [SII], obtained using ACAM on the William Herschel Telescope, has been used to investigate the ionisation structure of Abell 41. Longslit observations of the H-alpha and [NII] emission were obtained using the Manchester Echelle Spectrometer on the 2.1-m San Pedro Martir Telescope. These spectra, combined with the narrowband imagery, were used to develop a spatio-kinematical model of [NII] emission from Abell 41. The best fitting model reveals Abell 41 to have a waisted, bipolar structure with an expansion velocity of ~40kms at the waist. The symmetry axis of the model nebula is within 5$degr$ of perpendicular to the orbital plane of the central binary system. This provides strong evidence that the close-binary system, MT Ser, has directly affected the shaping of its nebula, Abell 41. Although the theoretical link between bipolar planetary nebulae and binary central stars is long established, this nebula is only the second to have this link, between nebular symmetry axis and binary plane, proved observationally.
182 - S. Kimeswenger 2008
While in the past spheroidicity was assumed, and still is used in modeling of most nebulae, we know now that only a small number of planetary nebulae (PNe) are really spherical or at least nearly round. Round planetary nebulae are the minority of obj ects. In case of those objects that underwent a very late helium flash (called VLTP or born-again PNe) it seems to be different. The first, hydrogen rich PN, is more or less round. The ejecta from the VLTP event is extremely asymmetrically. Angular momentum is mostly assumed to be the main reason for the asymmetry in PNe. Thus we have to find processes either changing their behavior within a few hundred to a few thousands of years or change their properties dramatically due to the variation of the abundance. They most likely have a strong link or dependency with the abundance of the ejecta.
We analyze the expansion of hydrogen-poor knots and filaments in the born-again planetary nebulae A30 and A78 based on Hubble Space Telescope (HST) images obtained almost 20 yr apart. The proper motion of these features generally increases with dista nce to the central star, but the fractional expansion decreases, i.e., the expansion is not homologous. As a result, there is not a unique expansion age, which is estimated to be 610-950 yr for A30 and 600-1140 yr for A78. The knots and filaments have experienced complex dynamical processes: the current fast stellar wind is mass loaded by the material ablated from the inner knots; the ablated material is then swept up until it shocks the inner edges of the outer, hydrogen-rich nebula. The angular expansion of the outer filaments shows a clear dependence on position angle, indicating that the interaction of the stellar wind with the innermost knots channels the wind along preferred directions. The apparent angular expansion of the innermost knots seems to be dominated by the rocket effect of evaporating gas and by the propagation of the ionization front inside them. Radiation-hydrodynamical simulations show that a single ejection of material followed by a rapid onset of the stellar wind and ionizing flux can reproduce the variety of clumps and filaments at different distances from the central star found in A30 and A78.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا