ﻻ يوجد ملخص باللغة العربية
In this paper, we study the doubly warped product manifolds with semisymmetric metric connection. We derive the curvatures formulas for doubly warped product manifold with semi-symmetric metric connection in terms of curvatures of components of doubly warped product manifolds. We also prove the necessary and sufficient condition for a doubly warped product manifold to be a warped product manifold. We obtain some results for Einstein doubly warped product manifold and Einstein-like doubly warped product manifold of class A with respect to a semi-symmetric metric connection.
We give a characterization {sl `a la Obata} for certain families of Kahler manifolds. These results are in the same line as other extensions of the well-known Obatas rigidity theorem from cite{Obata62}, like for instance the generalizations in cite{R
Non-existence of warped product semi-slant submanifolds of Kaehler manifolds was proved in [17], it is interesting to find their existence. In this paper, we prove the existence of warped product semi-slant submanifolds of nearly Kaehler manifolds by
We characterize Osserman and conformally Osserman Riemannian manifolds with the local structure of a warped product. By means of this approach we analyze the twisted product structure and obtain, as a consequence, that the only Osserman manifolds whi
We find the index of $widetilde{ abla}$-quasi-conformally symmetric and $widetilde{ abla}$-concircularly symmetric semi-Riemannian manifolds, where $widetilde{ abla}$ is metric connection.
We obtain a basic inequality involving the Laplacian of the warping function and the squared mean curvature of any warped product isometrically immersed in a Riemannian manifold without assuming any restriction on the Riemann curvature tensor of the