ترغب بنشر مسار تعليمي؟ اضغط هنا

A note on tools for prediction under uncertainty and identifiability of SIR-like dynamical systems for epidemiology

143   0   0.0 ( 0 )
 نشر من قبل Chiara Piazzola
 تاريخ النشر 2020
والبحث باللغة English




اسأل ChatGPT حول البحث

We provide an overview of the methods that can be used for prediction under uncertainty and data fitting of dynamical systems, and of the fundamental challenges that arise in this context. The focus is on SIR-like models, that are being commonly used when attempting to predict the trend of the COVID-19 pandemic. In particular, we raise a warning flag about identifiability of the parameters of SIR-like models; often, it might be hard to infer the correct values of the parameters from data, even for very simple models, making it non-trivial to use these models for meaningful predictions. Most of the points that we touch upon are actually generally valid for inverse problems in more general setups.



قيم البحث

اقرأ أيضاً

In this document we introduce the concepts of Observability and Iden-tifiability in Mathematical Epidemiology. We show that, even for simple and well known models, these properties are not always fulfilled. We also consider the problem of practical o bservability and identi-fiability which are connected to sensitivity and numerical condition numbers.
We consider an epidemic model of SIR type set on a homogeneous tree and investigate the spreading properties of the epidemic as a function of the degree of the tree, the intrinsic basic reproduction number and the strength of the interactions within the population of infected individuals. When the degree is one, the homogeneous tree is nothing but the standard lattice on the integers and our model reduces to a SIR model with discrete diffusion for which the spreading properties are very similar to the continuous case. On the other hand, when the degree is larger than two, we observe some new features in the spreading properties. Most notably, there exists a critical value of the strength of interactions above which spreading of the epidemic in the tree is no longer possible.
Inference on unknown quantities in dynamical systems via observational data is essential for providing meaningful insight, furnishing accurate predictions, enabling robust control, and establishing appropriate designs for future experiments. Merging mathematical theory with empirical measurements in a statistically coherent way is critical and challenges abound, e.g.,: ill-posedness of the parameter estimation problem, proper regularization and incorporation of prior knowledge, and computational limitations on full uncertainty qualification. To address these issues, we propose a new method for learning parameterized dynamical systems from data. In many ways, our proposal turns the canonical framework on its head. We first fit a surrogate stochastic process to observational data, enforcing prior knowledge (e.g., smoothness), and coping with challenging data features like heteroskedasticity, heavy tails and censoring. Then, samples of the stochastic process are used as surrogate data and point estimates are computed via ordinary point estimation methods in a modular fashion. An attractive feature of this approach is that it is fully Bayesian and simultaneously parallelizable. We demonstrate the advantages of our new approach on a predator prey simulation study and on a real world application involving within-host influenza virus infection data paired with a viral kinetic model.
A generalisation of the Susceptible-Infectious model is made to include a time-dependent transmission rate, which leads to a close analytical expression in terms of a logistic function. The solution can be applied to any continuous function chosen to describe the evolution of the transmission rate with time. Taking inspiration from real data of the Covid-19, for the case of cumulative confirmed positives and deaths, we propose an exponentially decaying transmission rate with two free parameters, one for its initial amplitude and another one for its decaying rate. The resultant time-dependent SI model, which under extra conditions recovers the standard Gompertz functional form, is then compared with data from selected countries and its parameters fit using Bayesian inference. We make predictions about the asymptotic number of confirmed positives and deaths, and discuss the possible evolution of the disease in each country in terms of our parametrisation of the transmission rate.
Existing strategies for determining the optimal treatment or monitoring strategy typically assume unlimited access to resources. However, when a health system has resource constraints, such as limited funds, access to medication, or monitoring capabi lities, medical decisions must balance impacts on both individual and population health outcomes. That is, decisions should account for competition between individuals in resource usage. One simple solution is to estimate the (counterfactual) resource usage under the possible interventions and choose the optimal strategy for which resource usage is within acceptable limits. We propose a method to identify the optimal dynamic intervention strategy that leads to the best expected health outcome accounting for a health systems resource constraints. We then apply this method to determine the optimal dynamic monitoring strategy for people living with HIV when resource limits on monitoring exist using observational data from the HIV-CAUSAL Collaboration.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا