ترغب بنشر مسار تعليمي؟ اضغط هنا

SCExAO/CHARIS Near-IR Integral Field Spectroscopy of the HD 15115 Debris Disk

94   0   0.0 ( 0 )
 نشر من قبل Kellen Lawson
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present new, near-infrared ($1.1 - 2.4$ $mu m$) high-contrast imaging of the debris disk around HD 15115 with the Subaru Coronagraphic Extreme Adaptive Optics system (SCExAO) coupled with the Coronagraphic High Angular Resolution Imaging Spectrograph (CHARIS). SCExAO/CHARIS resolves the disk down to $rho sim 0.2$ ($rm{r_{proj}} sim 10$ $rm{au}$), a factor of $sim 3-5$ smaller than previous recent studies. We derive a disk position angle of $rm{PA}$ $sim 279.4^circ - 280.5^circ$ and an inclination of $rm{i}$ $sim 85.3^circ - 86.2^circ$. While recent SPHERE/IRDIS imagery of the system could suggest a significantly misaligned two ring disk geometry, CHARIS imagery does not reveal conclusive evidence for this hypothesis. Moreover, optimizing models of both one and two ring geometries using differential evolution, we find that a single ring having a Hong-like scattering phase function matches the data equally well within the CHARIS field of view ($rho lesssim 1$). The disks asymmetry, well-evidenced at larger separations, is also recovered; the west side of the disk appears on average around 0.4 magnitudes brighter across the CHARIS bandpass between $0.25$ and $1$. Comparing STIS/50CCD optical photometry ($2000-10500$ $r{A}$) with CHARIS NIR photometry, we find a red (STIS/50CCD$-$CHARIS broadband) color for both sides of the disk throughout the $0.4 - 1$ region of overlap, in contrast to the blue color reported at similar wavelengths for regions exterior to $sim 2$. Further, this color may suggest a smaller minimum grain size than previously estimated at larger separations. Finally, we provide constraints on planetary companions, and discuss possible mechanisms for the observed inner disk flux asymmetry and color.

قيم البحث

اقرأ أيضاً

We present new, near-infrared (1.1--2.4 $mu m$) high-contrast imaging of the bright debris disk surrounding HIP 79977 with the Subaru Coronagraphic Extreme Adaptive Optics system (SCExAO) coupled with the CHARIS integral field spectrograph. SCExAO/CH ARIS resolves the disk down to smaller angular separations of (0.11; $r sim 14$ au) and at a higher significance than previously achieved at the same wavelengths. The disk exhibits a marginally significant east-west brightness asymmetry in $H$ band that requires confirmation. Geometrical modeling suggests a nearly edge-on disk viewed at a position angle of $sim$ 114.6$^{o}$ east of north. The disk is best-fit by scattered-light models assuming strongly forward-scattering grains ($g$ $sim$ 0.5--0.65) confined to a torus with a peak density at $r_{0}$ $sim$ 53--75 au. We find that a shallow outer density power law of $alpha_{out}=$-1-- -3 and flare index of $beta = 1$ are preferred. Other disk parameters (e.g.~inner density power law and vertical scale height) are more poorly constrained. The disk has a slightly blue intrinsic color and its profile is broadly consistent with predictions from birth ring models applied to other debris disks. While HIP 79977s disk appears to be more strongly forward-scattering than most resolved disks surrounding 5--30 Myr-old stars, this difference may be due to observational biases favoring forward-scattering models for inclined disks vs. lower inclination, ostensibly neutral-scattering disks like HR 4796As. Deeper, higher signal-to-noise SCExAO/CHARIS data can better constrain the disks dust composition.
We present a Subaru/IRCS H-band image of the edge-on debris disk around the F2V star HD 15115. We detected the debris disk, which has a bow shape and an asymmetric surface brightness, at a projected separation of 1--3 (~50--150 AU). The disk surface brightness is ~0.5--1.5 mag brighter on the western side than on the eastern side. We use an inclined annulus disk model to probe the disk geometry. The model fitting suggests that the disk has an inner hole with a radius of 86 AU and an eccentricity of 0.06. The disk model also indicates that the amount of dust on the western side is 2.2 times larger than that on the eastern side. A several Jupiter-mass planet may exist at $gtrsim$45 AU and capture grains at the Lagrangian points to open the eccentric gap. This scenario can explain both the eccentric gap and the difference in the amount of dust. In case of the stellar age of several 100 Myr, a dramatic planetesimal collision possibly causes the dust to increase in the western side. Interstellar medium interaction is also considered as a possible explanation of the asymmetric surface brightness, however, it hardly affect large grains in the vicinity of the inner hole.
We present observations of the HD 15115 debris disk from ALMA at 1.3 mm that capture this intriguing system with the highest resolution ($0.!!^{primeprime}6$ or $29$ AU) at millimeter wavelengths to date. This new ALMA image shows evidence for two ri ngs in the disk separated by a cleared gap. By fitting models directly to the observed visibilities within a MCMC framework, we are able to characterize the millimeter continuum emission and place robust constraints on the disk structure and geometry. In the best-fit model of a power law disk with a Gaussian gap, the disk inner and outer edges are at $43.9pm5.8$ AU ($0.!!^{primeprime}89pm0.!!^{primeprime}12$) and $92.2pm2.4$ AU ($1.!!^{primeprime}88pm0.!!^{primeprime}49$), respectively, with a gap located at $58.9pm4.5$~AU ($1.!!^{primeprime}2pm0.!!^{primeprime}10$) with a fractional depth of $0.88pm0.10$ and a width of $13.8pm5.6$ AU ($0.!!^{primeprime}28pm0.!!^{primeprime}11$). Since we do not see any evidence at millimeter wavelengths for the dramatic east-west asymmetry seen in scattered light, we conclude that this feature most likely results from a mechanism that only affects small grains. Using dynamical modeling and our constraints on the gap properties, we are able to estimate a mass for the possible planet sculpting the gap to be $0.16pm0.06$ $M_text{Jup}$.
We describe a new high-contrast imaging capability well suited for studying planet-forming disks: near-infrared (NIR) high-contrast spectropolarimetric imaging with the Subaru Coronagraphic Extreme Adaptive Optics (SCExAO) system coupled with the Cor onagraphic High Angular Resolution Imaging Spectrograph (CHARIS) integral field spectrograph (IFS). The advent of extreme adaptive optics (AO) systems, like SCExAO, has enabled recovery of planet-mass companions at the expected locations of gas-giant formation in young disks alongside disk structures (such as gaps or spirals) that may indicate protoplanet formation. In combination with SCExAO, the CHARIS IFS in polarimetry mode allows characterization of these systems at wavelengths spanning the NIR J, H, and K bands ($1.1-2.4$ $mu m$, $Rsim20$) and at angular separations as small as 0.04. By comparing the resulting images with forward-modeled scattered light or 3D radiative-transfer models, the likely origins of any observed features can be assessed. Utilization of swift optimization algorithms, such as differential evolution (DE), to identify model parameters that best reproduce the observations allows plausible disk geometries to be explored efficiently. The recent addition of CHARISs unique integral field spectropolarimetry mode has further facilitated the study of planet-forming disks -- aiding in the confirmation of candidate protoplanets, the diagnosis of disk structures, and the characterization of dust grain populations. We summarize preliminary results for two young planet-forming disk systems based on observations with the novel integral field spectropolarimetry mode for SCExAO/CHARIS.
We present SCExAO/CHARIS 1.1--2.4 micron integral field direct spectroscopy of the young HIP 79124 triple system. HIP 79124 is a member of the Scorpius-Centaurus association, consisting of an A0V primary with two low-mass companions at a projected se paration of <1 arcsecond. Thanks to the high quality wavefront corrections provided by SCExAO, both companions are decisively detected without the employment of any PSF-subtraction algorithm to eliminate quasi-static noise. The spectrum of the outer C object is very well matched by Upper Scorpius M4 pm 0.5 standard spectra, with a Teff = 2945 pm 100 and a mass of 350 MJup. HIP 79124 B is detected at a separation of only 180 mas in a highly-correlated noise regime, and it falls in the spectral range M6 pm 0.5 with Teff = 2840 pm 190 and 100 MJup. Previous studies of stellar populations in Sco-Cen have highlighted a discrepancy in isochronal ages between the lower-mass and higher-mass populations. This could be explained either by an age spread in the region, or by conventional isochronal models failing to reproduce the evolution of low-mass stars. The HIP 79124 system should be coeval, and therefore it provides an ideal laboratory to test these scenarios. We place the three components in a color-magnitude diagram and find that the models predict a younger age for the two low-mass companions (3 Myr) than for the primary star (6 Myr). These results imply that the omission of magnetic effects in conventional isochronal models inhibit them from reproducing early low-mass stellar evolution, which is further supported by the fact that new models that include such effects provide more consistent ages in the HIP 79124 system.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا