ترغب بنشر مسار تعليمي؟ اضغط هنا

Design and performance of the multiplexing spectrometer CAMEA

102   0   0.0 ( 0 )
 نشر من قبل Jakob Lass
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The cold neutron multiplexing secondary spectrometer CAMEA (Continuous Angle Multiple Energy Analysis) was commissioned at the Swiss spallation neutron source SINQ at the Paul Scherrer Institut at the end of 2018. The spectrometer is optimised for an efficient data collection in the horizontal scattering plane, allowing for detailed and rapid mapping of excitations under extreme conditions. The novel design consists of consecutive, upward scattering analyzer arcs underneath an array of position sensitive detectors mounted inside a low permeability stainless-steel vacuum vessel. The construction of the worlds first continuous angle multiple energy analysis instrument required novel solutions to many technical challenges, including analyzer mounting, vacuum connectors, and instrument movement. These were solved by extensive prototype experiments and in-house developments. Here we present a technical overview of the spectrometer describing in detail the engineering solutions and present our first experimental data taken during the commissioning. Our results demonstrate the tremendous gains in data collection rate for this novel type of spectrometer design.

قيم البحث

اقرأ أيضاً

The CAMEA ESS neutron spectrometer is designed to achieve a high detection efficiency in the horizontal scattering plane, and to maximize the use of the long pulse European Spallation Source. It is an indirect geometry time-of-flight spectrometer tha t uses crystal analysers to determine the final energy of neutrons scattered from the sample. Unlike other indirect gemeotry spectrometers CAMEA will use ten concentric arcs of analysers to analyse scattered neutrons at ten different final energies, which can be increased to 30 final energies by use of prismatic analysis. In this report we will outline the CAMEA instrument concept, the large performance gain, and the potential scientific advancements that can be made with this instrument.
The Low Energy Neutron Source (LENS) is an accelerator-based pulsed cold neutron facility under construction at the Indiana University Cyclotron Facility (IUCF). The idea behind LENS is to produce pulsed cold neutron beams starting with ~MeV neutrons from (p,n) reactions in Be which are moderated to meV energies and extracted from a small solid angle for use in neutron instruments which can operate efficiently with relatively broad (~1 msec) neutron pulse widths. Although the combination of the features and operating parameters of this source is unique at present, the neutronic design possesses several features similar to those envisioned for future neutron facilities such as long-pulsed spallation sources (LPSS) and very cold neutron (VCN) sources. We describe the underlying ideas and design details of the target/moderator/reflector system (TMR) and compare measurements of its brightness, energy spectrum, and emission time distribution under different moderator configurations with MCNP simulations. Brightness measurements using an ambient temperature water moderator agree with MCNP simulations within the 20% accuracy of the measurement. The measured neutron emission time distribution from a solid methane moderator is in agreement with simulation and the cold neutron flux is sufficient for neutron scattering studies of materials. We describe some possible modifications to the existing design which would increase the cold neutron brightness with negligible effect on the emission time distribution.
SIKA, a high-flux cold-neutron triple-axis spectrometer at the OPAL reactor at the Australian Nuclear Science and Technology Organization, is equipped with a 13-blade analyser and position-sensitive detector. This multiplexing design endows SIKA high flexibility to run in both traditional triple-axis and multiplexing analyser modes. In this study, two different multiplexing modes on SIKA are simulated using Monte-Carlo ray-tracing methods. The simulation results demonstrate SIKA capabilities to work in these operational modes, especially, the multi-Q const-Ef mode. This capability was demonstrated by measuring the phonon dispersion of a Pb single-crystal sample with the multi-Q const-Ef mode on SIKA. Compared to the traditional and multi-analyser triple-axis spectrometers, multiplexing modes on SIKA combine the advantages of the high data-acquisition efficiency and flexibility to focus on local areas of interest in the (Q, w) space.
Dedicated spectrometers for terahertz radiation with [0.3, 30] THz frequencies using traditional optomechanical interferometry are substantially less common than their infrared and microwave counterparts. This paper presents the design and initial pe rformance measurements of a tabletop Fourier transform spectrometer (FTS) for multi-terahertz radiation using infrared optics in a Michelson arrangement. This is coupled to a broadband pyroelectric photodetector designed for [0.1, 30] THz frequencies. We measure spectra of narrowband and broadband input radiation to characterize the performance of this instrument above 10 THz, where signal-to-noise is high. This paves the groundwork for planned upgrades to extend below 10 THz. We also briefly discuss potential astroparticle physics applications of such FTS instruments to broadband axion dark matter searches, whose signature comprises low-rate monochromatic photons with unknown frequency.
104 - L. Aliaga , L. Bagby , B. Baldin 2013
The MINERvA experiment is designed to perform precision studies of neutrino-nucleus scattering using $ u_mu$ and ${bar u}_mu$ neutrinos incident at 1-20 GeV in the NuMI beam at Fermilab. This article presents a detailed description of the minerva det ector and describes the {em ex situ} and {em in situ} techniques employed to characterize the detector and monitor its performance. The detector is comprised of a finely-segmented scintillator-based inner tracking region surrounded by electromagnetic and hadronic sampling calorimetry. The upstream portion of the detector includes planes of graphite, iron and lead interleaved between tracking planes to facilitate the study of nuclear effects in neutrino interactions. Observations concerning the detector response over sustained periods of running are reported. The detector design and methods of operation have relevance to future neutrino experiments in which segmented scintillator tracking is utilized.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا