ترغب بنشر مسار تعليمي؟ اضغط هنا

Corotating binary systems of identical Kerr-Newman black holes

78   0   0.0 ( 0 )
 نشر من قبل Roberto Ivan Cabrera Munguia Dr.
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In the present paper binary configurations of identical corotating Kerr-Newman black holes separated by a massless strut are derived and studied. After solving the axis conditions and establishing the absence of magnetic charges in the solution, one gets two 4-parametric corotating binary black hole models endowed with electric charge, where each source contains equal/opposite electric charge in the first/second configuration. Since the black hole horizons are given by concise expressions in terms of physical parameters, all their thermodynamical properties satisfying the Smarr relation for the mass are also obtained. We discuss the physical limits of both models.

قيم البحث

اقرأ أيضاً

60 - I. Cabrera-Munguia 2020
This paper is dedicated to derive and study binary systems of identical corotating dyonic black holes separated by a massless strut -- two 5-parametric corotating binary black hole models endowed with both electric and magnetic charges-- where the dy onic black holes carrying equal/opposite electromagnetic charges in the first/second model satisfy the extended Smarr formula for the mass including the magnetic charge as a fourth conserved parameter.
Using the notion of thermodynamic length, the first law of thermodynamics is consistently derived for two binary configurations of equal Kerr-Newman black holes separated by a massless strut. Like in the electrostatic systems of two Reissner-Nordstro m black holes and stationary vacuum systems of two Kerr black holes considered earlier, the thermodynamic length $ell$ turns out to be defined by the same simple formula $ell=Lexp(gamma_0)$, $L$ being the coordinate length of the strut and $gamma_0$ the value of the metric function $gamma$ on the strut, which permits the elaboration of $ell$ in a concise analytic form. The expression of the free energy in the case of two generic Kerr-Newman black holes is also proposed.
In the present paper the repulsion of two extreme Kerr black holes arising from their spin-spin interaction is analyzed within the framework of special subfamilies of the well-known Kinnersley-Chitre solution. The binary configurations of both equal and nonequal extreme repelling black holes are considered.
68 - V. S. Manko , E. Ruiz 2020
In this paper, we employ the general equatorially symmetric two-soliton solution of the Einstein-Maxwell equations for elaborating two physically meaningful configurations describing a pair of equal Kerr-Newman corotating black holes separated by a m assless strut. The first configuration is characterized by opposite magnetic charges of its constituents, while in the second configuration the black holes carry equal electric and opposite magnetic charges, thus providing a nontrivial example of a binary dyonic black-hole system. The thermodynamic properties of these binary configurations are studied and the first law of thermodynamics taking correctly into account the magnetic field contribution is formulated for each case.
Quantum radiative characteristics of slowly varying nonstationary Kerr-Newman black holes are investigated by using the method of generalized tortoise coordinate transformation. It is shown that the temperature and the shape of the event horizon of t his kind of black holes depend on the time and the angle. Further, we reveal a relationship that is ignored before between thermal radiation and non-thermal radiation, which is that the chemical potential in thermal radiation spectrum is equal to the highest energy of the negative energy state of particles in non-thermal radiation for slowly varying nonstationary Kerr-Newman black holes. Also, we show that the deduced general results can be degenerated to the known conclusion of stationary Kerr-Newman black holes.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا