ترغب بنشر مسار تعليمي؟ اضغط هنا

Visualising the Vertical Energetic Landscape in Organic Photovoltaics

83   0   0.0 ( 0 )
 نشر من قبل Yana Vaynzof
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Energy level diagrams in organic electronic devices play a crucial role in device performance and interpretation of device physics. In the case of organic solar cells, it has become routine to estimate the photovoltaic gap of the donor:acceptor blend using the energy values measured on the individual blend components, resulting in a poor agreement with the corresponding open-circuit voltage of the device. To address this issue, we developed a method that allows a direct visualisation of the vertical energetic landscape in the blend, obtained by combining ultraviolet photoemission spectroscopy and argon cluster etching. We investigate both model and high-performance photovoltaic systems and demonstrate that the resulting photovoltaic gaps are in close agreement with the measured CT energies and open-circuit voltages. Furthermore, we show that this method allows us to study the evolution of the energetic landscape upon environmental degradation, critically important for understanding degradation mechanisms and development of mitigation strategies.



قيم البحث

اقرأ أيضاً

Bulk-heterojunction (BHJ) non-fullerene organic solar cells prepared from sequentially deposited donor and acceptor layers (sq-BHJ) have recently been promising to be highly efficient, environmentally friendly, and compatible with large area and roll -to-toll fabrication. However, the related photophysics at donor-acceptor interface and the vertical heterogeneity of donor-acceptor distribution, critical for exciton dissociation and device performance, are largely unexplored. Herein, steady-state and time-resolved optical and electrical techniques are employed to characterize the interfacial trap states. Correlation with the luminescent efficiency of interfacial states and its non-radiative recombination, interfacial trap states are characterized to be about 50% more populated in the sq-BHJ than as-cast BHJ (c-BHJ), which probably limits the device voltage output. Cross-sectional energy-dispersive X-ray spectroscopy and ultraviolet photoemission spectroscopy depth profiling directly vizualize the donor-acceptor vertical stratification with a precision of 1-2 nm. From the proposed needle model, the high exciton dissociation efficiency is rationalized. Our study highlights the promise of sequential deposition to fabricate efficient solar cells, and points towards improving the voltage output and overall device performance via eliminating interfacial trap states.
Point defects in metal halide perovskites play a critical role in determining their properties and optoelectronic performance; however, many open questions remain unanswered. In this work, we apply impedance spectroscopy and deep-level transient spec troscopy to characterize the ionic defect landscape in methylammonium lead triiodide ($MAPbI_3$) perovskites in which defects were purposely introduced by fractionally changing the precursor stoichiometry. Our results highlight the profound influence of defects on the electronic landscape, exemplified by their impact on the device built-in potential, and consequently, the open-circuit voltage. Even low ion densities can have an impact on the electronic landscape when both cations and anions are considered as mobile. Moreover, we find that all measured ionic defects fulfil the Meyer--Neldel rule with a characteristic energy connected to the underlying ion hopping process. These findings support a general categorization of defects in halide perovskite compounds.
Organic printed electronics has proven its potential as an essential enabler for applications related to healthcare, entertainment, energy and distributed intelligent objects. The possibility of exploiting solution-based and direct-writing production schemes further boosts the benefits offered by such technology, facilitating the implementation of cheap, conformable, bio-compatible electronic applications. The result shown in this work challenges the widespread assumption that such class of electronic devices is relegated to low-frequency operation, owing to the limited charge mobility of the materials and to the low spatial resolution achievable with conventional printing techniques. Here, it is shown that solution-processed and direct-written organic field-effect transistors can be carefully designed and fabricated so to achieve a maximum transition frequency of 160 MHz, unlocking an operational range that was not available before for organics. Such range was believed to be only accessible with more performing classes of semiconductor materials and/or more expensive fabrication schemes. The present achievement opens a route for cost- and energy-efficient manufacturability of flexible and conformable electronics with wireless-communication capabilities.
Ternary organic solar cells (TOSC) are currently under intensive investigation, recently reaching a record efficiency of 17.1%. The origin of the device open-circuit voltage (VOC), already a multifaceted issue in binary OSC, is even more complex in T OSCs. Herein, we investigate two ternary systems with one donor (D) and two acceptor materials (A1, A2) including fullerene and non-fullerene acceptors. By varying the ratio between the two acceptors, we find the VOC to be gradually tuned between those of the two binary systems, D:A1 and D:A2. To investigate the origin of this change, we employ ultra-violet photoemission spectroscopy (UPS) depth profiling, which is used to estimate the photovoltaic gap in the ternary systems. Our results reveal an excellent agreement between the estimated photovoltaic gap and the VOC for all mixing ratios, suggesting that the energetic alignment between the blend components varies depending on the ratio D:A1:A2. Furthermore, our results indicate that the sum of radiative and non-radiative losses in these ternary systems is independent of the blend composition. Finally, we demonstrate the superiority of UPS over X-ray photoemission spectroscopy (XPS) depth profiling in resolving compositional profiles for material combinations with very similar chemical, but dissimilar electronic structures, as common in TOSCs.
Halide perovskites have emerged as disruptive semiconductors for applications including photovoltaics and light emitting devices, with modular optoelectronic properties realisable through composition and dimensionality tuning. Layered Ruddlesden-Popp er perovskites of the form BA2MAn-1PbnI3n+1, where n is the number of lead-halide and methylammonium (MA) sheets spaced by longer butylammonium (BA) cations, are particularly interesting due to their unique two-dimensional character and charge carrier dynamics dominated by strongly bound excitons. However, long-range energy transport through exciton diffusion in these materials is not understood or realised. Here, we employ local time-resolved luminescence mapping techniques to visualise exciton transport in high-quality exfoliated flakes of the BA2MAn-1PbnI3n+1 perovskite family. We uncover two distinct transport regimes, depending on the temperature range studied. At temperatures above 100 K, diffusion is mediated by thermally activated hopping processes between localised states. At lower temperatures, a non-uniform energetic landscape emerges in which exciton transport is dominated by energy funnelling processes to lower energy states, leading to long range transport over hundreds of nanometres even in the absence of exciton-phonon coupling and in the presence of local optoelectronic heterogeneity. Efficient, long-range and switchable excitonic funnelling offers exciting possibilities of controlled directional long-range transport in these 2D materials for new device applications.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا