ترغب بنشر مسار تعليمي؟ اضغط هنا

Dispersion measures of fast radio burst host galaxies derived from IllustrisTNG simulation

390   0   0.0 ( 0 )
 نشر من قبل Fayin Wang
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We calculate the dispersion measures (DMs) contributed by host galaxies of fast radio bursts (FRBs). Based on a few host galaxy observations, a large sample of galaxy with similar properties to observed ones has been selected from the IllustrisTNG simulation. They are used to compute the distributions of host galaxy DMs for repeating and non-repeating FRBs. For repeating FRBs, we infer the DM$ _{mathrm{host}} $ for FRBs like FRB 121102 and FRB 180916 by assuming that the burst sites are tracing the star formation rates in host galaxies. The median DM$_{mathrm{host}}$ are $35 (1+z)^{1.08}$ and $96(1+z)^{0.83}$ pc cm$^{-3}$ for FRBs like FRB 121102 and FRB 180916, respectively. In another case, the median of DM$_{mathrm{host}}$ is about $30 - 70$ pc cm$^{-3}$ for non-repeating FRBs in the redshift range $z=0.1-1.5$, assuming that the burst sites are the locations of binary neutron star mergers. In this case, the evolution of the median DM$_{mathrm{host}}$ can be calculated by $33(1+z)^{0.84}$ pc cm$^{-3}$. The distributions of DM$_{mathrm{host}}$ of repeating and non-repeating FRBs can be well fitted with the log-normal function. Our results can be used to infer redshifts of non-localized FRBs.



قيم البحث

اقرأ أيضاً

99 - Z. J. Zhang , K. Yan , C. M. Li 2020
Fast radio bursts (FRBs) are millisecond-duration radio transients and can be used as a cosmological probe. However, the dispersion measure (DM) contributed by intergalactic medium (IGM) is hard to be distinguished from other components. In this pape r, we use the IllustrisTNG simulation to realistically estimate the $DM_{rm IGM}$ up to $zsim 9$. We find $DM_{rm IGM} = 892^{+721}_{-270}$ pc cm$^{-3}$ at $z=1$. The probability distribution of $DM_{rm IGM}$ can be well fitted by a quasi-Gaussian function with a long tail. The tail is caused by the structures along the line of sight in IGM. Subtracting DM contributions from the Milky Way and host galaxy for localized FRBs, the $DM_{rm IGM}$ value is close to the derived $DM_{rm IGM}-z$ relation. We also show the capability to constrain the cosmic reionization history with the $DM_{rm IGM}$ of high-redshift FRBs in the IllustrisTNG universe. The derived $DM_{rm IGM}-z$ relation at high redshifts can be well fitted by a $tanh$ reionization model with the reionization redshift $z=5.95$, which is compatible with the reionization model used by the IllustrisTNG simulation. The $DM_{rm IGM}$ of high-redshift FRBs also provides an independent way to measure the optical depth of cosmic microwave background (CMB). Our result can be used to derive the pseudo-redshifts of non-localized FRBs for $DM_{rm IGM}<4000$ pc cm$^{-3}$.
In recent years, millisecond duration radio signals originating from distant galaxies appear to have been discovered in the so-called Fast Radio Bursts. These signals are dispersed according to a precise physical law and this dispersion is a key obse rvable quantity which, in tandem with a redshift measurement, can be used for fundamental physical investigations. While every fast radio burst has a dispersion measurement, none before now have had a redshift measurement, due to the difficulty in pinpointing their celestial coordinates. Here we present the discovery of a fast radio burst and the identification of a fading radio transient lasting $sim 6$ days after the event, which we use to identify the host galaxy; we measure the galaxys redshift to be $z=0.492pm0.008$. The dispersion measure and redshift, in combination, provide a direct measurement of the cosmic density of ionised baryons in the intergalactic medium of $Omega_{mathrm{IGM}}=4.9 pm 1.3%$, in agreement with the expectation from WMAP, and including all of the so-called missing baryons. The $sim6$-day transient is largely consistent with a short gamma-ray burst radio afterglow, and its existence and timescale do not support progenitor models such as giant pulses from pulsars, and supernovae. This contrasts with the interpretation of another recently discovered fast radio burst, suggesting there are at least two classes of bursts.
We investigate the possibility of measuring intergalactic magnetic fields using the dispersion measures and rotation measures of fast radio bursts. With Bayesian methods, we produce probability density functions for values of these measures. We disti nguish between contributions from the intergalactic medium, the host galaxy and the local environment of the progenitor. To this end, we use constrained, magnetohydrodynamic simulations of the local Universe to compute lines-of-sight integrals from the position of the Milky Way. In particular, we differentiate between predominantly astrophysical and primordial origins of magnetic fields in the intergalactic medium. We test different possible types of host galaxies and probe different distribution functions of fast radio burst progenitor locations inside the host galaxy. Under the assumption that fast radio bursts are produced by magnetars, we use analytic predictions to account for the contribution of the local environment. We find that less than 100 fast radio bursts from magnetars in stellar-wind environments hosted by starburst dwarf galaxies at redshift $z gtrsim 0.5$ suffice to discriminate between predominantly primordial and astrophysical origins of intergalactic magnetic fields. However, this requires the contribution of the Milky Way to be removed with a precision of $approx 1 rm~rad~m^{-2}$. We show the potential existence of a subset of fast radio bursts whose rotation measure carry information on the strength of the intergalactic magnetic field and its origins.
Quasi-periodic oscillations inferred during rare magnetar giant flare tails were initially interpreted as torsional oscillations of the neutron star (NS) crust, and have been more recently described as global core+crust perturbations. Similar frequen cies are also present in high signal-to-noise magnetar short bursts. In magnetars, disturbances of the field are strongly coupled to the NS crust regardless of the triggering mechanism of short bursts. For low-altitude magnetospheric magnetar models of fast radio bursts (FRBs) associated with magnetar short bursts, such as the low-twist model, crustal oscillations may be associated with additional radio bursts in the encompassing short burst event (as recently suggested for SGR 1935+2154). Given the large extragalactic volume probed by wide-field radio transient facilities, this offers the prospect of studying NS crusts leveraging samples far more numerous than galactic high-energy magnetar bursts by studying statistics of sub-burst structure or clustered trains of FRBs. We explore the prospects for distinguishing NS equation of state models with increasingly larger future sets of FRB observations. Lower $l$-number eigenmodes (corresponding to FRB time intervals of $sim5-50$ ms) are likely less susceptible than high-$l$ modes to confusion by systematic effects associated with the NS crust physics, magnetic field, and damping. They may be more promising in their utility, and also may corroborate models where FRBs arise from mature magnetars. Future observational characterization of such signals can also determine whether they can be employed as cosmological standard oscillators to constrain redshift, or can be used to constrain the mass of FRB-producing magnetars when reliable redshifts are available.
Fast radio bursts (FRBs) are millisecond transients of unknown origin(s) occurring at cosmological distances. Here we, for the first time, show time-integrated-luminosity functions and volumetric occurrence rates of non-repeating and repeating FRBs a gainst redshift. The time-integrated-luminosity functions of non-repeating FRBs do not show any significant redshift evolution. The volumetric occurrence rates are almost constant during the past $sim$10 Gyr. The nearly-constant rate is consistent with a flat trend of cosmic stellar-mass density traced by old stellar populations. Our findings indicate that the occurrence rate of non-repeating FRBs follows the stellar-mass evolution of long-living objects with $sim$Gyr time scales, favouring e.g. white dwarfs, neutron stars, and black holes, as likely progenitors of non-repeating FRBs. In contrast, the occurrence rates of repeating FRBs may increase towards higher redshifts in a similar way to the cosmic star formation-rate density or black hole accretion-rate density if the slope of their luminosity function does not evolve with redshift. Short-living objects with $lesssim$ Myr time scales associated with young stellar populations (or their remnants, e.g., supernova remnants, young pulsars, and magnetars) or active galactic nuclei might be favoured as progenitor candidates of repeating FRBs.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا