ﻻ يوجد ملخص باللغة العربية
We generalize the relation between discontinuities of scattering amplitudes and cut diagrams to cover sequential discontinuities (discontinuities of discontinuities) in arbitrary momentum channels. The new relations are derived using time-ordered perturbation theory, and hold at phase-space points where all cut momentum channels are simultaneously accessible. As part of this analysis, we explain how to compute sequential discontinuities as monodromies and explore the use of the monodromy group in characterizing the analytic properties of Feynman integrals. We carry out a number of cross-checks of our new formulas in polylogarithmic examples, in some cases to all loop orders.
We initiate the study of cluster algebras in Feynman integrals in dimensional regularization. We provide evidence that four-point Feynman integrals with one off-shell leg are described by a $C_{2}$ cluster algebra, and we find cluster adjacency relat
Feynman integrals obey linear relations governed by intersection numbers, which act as scalar products between vector spaces. We present a general algorithm for constructing multivariate intersection numbers relevant to Feynman integrals, and show fo
We study Feynman integrals and scattering amplitudes in ${cal N}=4$ super-Yang-Mills by exploiting the duality with null polygonal Wilson loops. Certain Feynman integrals, including one-loop and two-loop chiral pentagons, are given by Feynman diagram
We present a detailed description of the recent idea for a direct decomposition of Feynman integrals onto a basis of master integrals by projections, as well as a direct derivation of the differential equations satisfied by the master integrals, empl
Canonical Feynman integrals are of great interest in the study of scattering amplitudes at the multi-loop level. We propose to construct $dlog$-form integrals of the hypergeometric type, treat them as a representation of Feynman integrals, and projec