ترغب بنشر مسار تعليمي؟ اضغط هنا

Topological states in disordered arrays of dielectric nanoparticles

85   0   0.0 ( 0 )
 نشر من قبل Chaohong Lee
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the interplay between disorder and topology for the localized edge states of light in topological zigzag arrays of resonant dielectric nanoparticles. We characterize topological properties by the winding number that depends on both zigzag angle and spacing between nanoparticles in the array. For equal-spacing arrays, the system may have two values of the winding number $ u=0$ or $1$, and it demonstrates localization at the edges even in the presence of disorder, being consistent with experimental observations for finite-length nanodisk structures. For staggered-spacing arrays, the system possesses richer topological phases characterized by the winding numbers $ u=0$, $1$ or $2$, which depend on the averaged zigzag angle and disorder strength. In a sharp contrast to the equal-spacing zigzag arrays, staggered-spacing arrays reveal two types of topological phase transitions induced by the angle disorder, (i) $ u = 0 leftrightarrow u = 1$ and (ii) $ u = 1 leftrightarrow u = 2$. More importantly, the spectrum of staggered-spacing arrays may remain gapped even in the case of a strong disorder.



قيم البحث

اقرأ أيضاً

Topology describes properties that remain unaffected by smooth distortions. Its main hallmark is the emergence of edge states localized at the boundary between regions characterized by distinct topological invariants. This feature offers new opportun ities for robust trapping of light in nano- and micro-meter scale systems subject to fabrication imperfections and to environmentally induced deformations. Here we show lasing in such topological edge states of a one-dimensional lattice of polariton micropillars that implements an orbital version of the Su-Schrieffer-Heeger Hamiltonian. We further demonstrate that lasing in these states persists under local deformations of the lattice. These results open the way to the implementation of chiral lasers in systems with broken time-reversal symmetry and, when combined with polariton interactions, to the study of nonlinear topological photonics.
The concept of topological phases has been generalized to higher-order topological insulators and superconductors with novel boundary states on corners or hinges. Meanwhile, recent experimental advances in controlling dissipation (such as gain and lo ss) open new possibilities in studying non-Hermitian topological phases. Here, we show that higher-order topological corner states can emerge by simply introducing staggered on-site gain/loss to a Hermitian system in trivial phases. For such a non-Hermitian system, we establish a general bulk-corner correspondence by developing a biorthogonal nested-Wilson-loop and edge-polarization theory, which can be applied to a wide class of non-Hermitian systems with higher-order topological orders. The theory gives rise to topological invariants characterizing the non-Hermitian topological multipole moments (i.e., corner states) that are protected by reflection or chiral symmetry. Such gain/loss induced higher-order topological corner states can be experimentally realized using photons in coupled cavities or cold atoms in optical lattices.
We theoretically analyse the hybrid Mie-exciton optical modes arising from the strong coupling of excitons in organic dyes or transition-metal dichalcogenides with the Mie resonances of high-index dielectric nanoparticles. Detailed analytic calculati ons show that silicon--exciton core--shell nanoparticles are characterised by a richness of optical modes which can be tuned through nanoparticle dimensions to produce large anticrossings in the visible or near infrared, comparable to those obtained in plexcitonics. The complex magnetic-excitonic nature of these modes is understood through spectral decomposition into Mie-coefficient contributions, complemented by electric and magnetic near-field profiles. In the frequency range of interest, absorptive losses in silicon are sufficiently low to allow observation of several periods of Rabi oscillations in strongly coupled emitter-particle architectures, as confirmed here by discontinuous Galerkin time-domain calculations for the electromagnetic field beat patterns. These results suggest that Mie resonances in high-index dielectrics are promising alternatives for plasmons in strong-coupling applications in nanophotonics, while the coupling of magnetic and electric modes opens intriguing possibilities for external control.
In topological systems, a modulation in the gap onset near interfaces can lead to the appearance of massive edge states, as were first described by Volkov and Pankratov. In this work, we study graphene nanoribbons in the presence of intrinsic spin-or bit coupling smoothly modulated near the system edges. We show that this space modulation leads to the appearance of Volkov-Pankratov states, in addition to the topologically protected ones. We obtain this result by means of two complementary methods, one based on the effective low-energy Dirac equation description and the other on a fully numerical tight-binding approach, finding excellent agreement between the two. We then show how transport measurements might reveal the presence of Volkov-Pankratov states, and discuss possible graphene-like structures in which such states might be observed.
We show that finite lattices with arbitrary boundaries may support large degenerate subspaces, stemming from the underlying translational symmetry of the lattice. When the lattice is coupled to an environment, a potentially large number of these stat es remains weakly or perfectly uncoupled from the environment, realising a new kind of bound states in the continuum. These states are strongly localized along particular directions of the lattice which, in the limit of strong coupling to the environment, leads to spatially-localized subradiant states.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا