ﻻ يوجد ملخص باللغة العربية
We study the interplay between disorder and topology for the localized edge states of light in topological zigzag arrays of resonant dielectric nanoparticles. We characterize topological properties by the winding number that depends on both zigzag angle and spacing between nanoparticles in the array. For equal-spacing arrays, the system may have two values of the winding number $ u=0$ or $1$, and it demonstrates localization at the edges even in the presence of disorder, being consistent with experimental observations for finite-length nanodisk structures. For staggered-spacing arrays, the system possesses richer topological phases characterized by the winding numbers $ u=0$, $1$ or $2$, which depend on the averaged zigzag angle and disorder strength. In a sharp contrast to the equal-spacing zigzag arrays, staggered-spacing arrays reveal two types of topological phase transitions induced by the angle disorder, (i) $ u = 0 leftrightarrow u = 1$ and (ii) $ u = 1 leftrightarrow u = 2$. More importantly, the spectrum of staggered-spacing arrays may remain gapped even in the case of a strong disorder.
Topology describes properties that remain unaffected by smooth distortions. Its main hallmark is the emergence of edge states localized at the boundary between regions characterized by distinct topological invariants. This feature offers new opportun
The concept of topological phases has been generalized to higher-order topological insulators and superconductors with novel boundary states on corners or hinges. Meanwhile, recent experimental advances in controlling dissipation (such as gain and lo
We theoretically analyse the hybrid Mie-exciton optical modes arising from the strong coupling of excitons in organic dyes or transition-metal dichalcogenides with the Mie resonances of high-index dielectric nanoparticles. Detailed analytic calculati
In topological systems, a modulation in the gap onset near interfaces can lead to the appearance of massive edge states, as were first described by Volkov and Pankratov. In this work, we study graphene nanoribbons in the presence of intrinsic spin-or
We show that finite lattices with arbitrary boundaries may support large degenerate subspaces, stemming from the underlying translational symmetry of the lattice. When the lattice is coupled to an environment, a potentially large number of these stat