ترغب بنشر مسار تعليمي؟ اضغط هنا

FedCTR: Federated Native Ad CTR Prediction with Multi-Platform User Behavior Data

133   0   0.0 ( 0 )
 نشر من قبل Chuhan Wu
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Native ad is a popular type of online advertisement which has similar forms with the native content displayed on websites. Native ad CTR prediction is useful for improving user experience and platform revenue. However, it is challenging due to the lack of explicit user intent, and users behaviors on the platform with native ads may not be sufficient to infer their interest in ads. Fortunately, user behaviors exist on many online platforms and they can provide complementary information for user interest mining. Thus, leveraging multi-platform user behaviors is useful for native ad CTR prediction. However, user behaviors are highly privacy-sensitive and the behavior data on different platforms cannot be directly aggregated due to user privacy concerns and data protection regulations like GDPR. Existing CTR prediction methods usually require centralized storage of user behavior data for user modeling and cannot be directly applied to the CTR prediction task with multi-platform user behaviors. In this paper, we propose a federated native ad CTR prediction method named FedCTR, which can learn user interest representations from their behaviors on multiple platforms in a privacy-preserving way. On each platform a local user model is used to learn user embeddings from the local user behaviors on that platform. The local user embeddings from different platforms are uploaded to a server for aggregation, and the aggregated user embeddings are sent to the ad platform for CTR prediction. Besides, we apply LDP and DP techniques to the local and aggregated user embeddings respectively for better privacy protection. Moreover, we propose a federated framework for model training with distributed models and user behaviors. Extensive experiments on real-world dataset show that FedCTR can effectively leverage multi-platform user behaviors for native ad CTR prediction in a privacy-preserving manner.



قيم البحث

اقرأ أيضاً

134 - Shu Wu , Feng Yu , Xueli Yu 2020
The CTR (Click-Through Rate) prediction plays a central role in the domain of computational advertising and recommender systems. There exists several kinds of methods proposed in this field, such as Logistic Regression (LR), Factorization Machines (F M) and deep learning based methods like Wide&Deep, Neural Factorization Machines (NFM) and DeepFM. However, such approaches generally use the vector-product of each pair of features, which have ignored the different semantic spaces of the feature interactions. In this paper, we propose a novel Tensor-based Feature interaction Network (TFNet) model, which introduces an operating tensor to elaborate feature interactions via multi-slice matrices in multiple semantic spaces. Extensive offline and online experiments show that TFNet: 1) outperforms the competitive compared methods on the typical Criteo and Avazu datasets; 2) achieves large improvement of revenue and click rate in online A/B tests in the largest Chinese App recommender system, Tencent MyApp.
As a new type of e-commerce platform developed in recent years, local consumer service platform provides users with software to consume service to the nearby store or to the home, such as Groupon and Koubei. Different from other common e-commerce pla tforms, the behavior of users on the local consumer service platform is closely related to their real-time local context information. Therefore, building a context-aware user behavior prediction system is able to provide both merchants and users better service in local consumer service platforms. However, most of the previous work just treats the contextual information as an ordinary feature into the prediction model to obtain the prediction list under a specific context, which ignores the fact that the interest of a user in different contexts is often significantly different. Hence, in this paper, we propose a context-aware heterogeneous graph attention network (CHGAT) to dynamically generate the representation of the user and to estimate the probability for future behavior. Specifically, we first construct the meta-path based heterogeneous graphs with the historical behaviors from multiple sources and comprehend heterogeneous vertices in the graph with a novel unified knowledge representing approach. Next, a multi-level attention mechanism is introduced for context-aware aggregation with graph vertices, which contains the vertex-level attention network and the path-level attention network. Both of them aim to capture the semantic correlation between information contained in the graph and the outside real-time contextual information in the search system. Then the model proposed in this paper aggregates specific graphs with their corresponding context features and obtains the representation of user interest under a specific context and input it into the prediction network to finally obtain the predicted probability of user behavior.
76 - Hu Liu , Jing Lu , Xiwei Zhao 2020
Click-through rate (CTR) prediction is one of the fundamental tasks for e-commerce search engines. As search becomes more personalized, it is necessary to capture the user interest from rich behavior data. Existing user behavior modeling algorithms d evelop different attention mechanisms to emphasize query-relevant behaviors and suppress irrelevant ones. Despite being extensively studied, these attentions still suffer from two limitations. First, conventional attentions mostly limit the attention field only to a single users behaviors, which is not suitable in e-commerce where users often hunt for new demands that are irrelevant to any historical behaviors. Second, these attentions are usually biased towards frequent behaviors, which is unreasonable since high frequency does not necessarily indicate great importance. To tackle the two limitations, we propose a novel attention mechanism, termed Kalman Filtering Attention (KFAtt), that considers the weighted pooling in attention as a maximum a posteriori (MAP) estimation. By incorporating a priori, KFAtt resorts to global statistics when few user behaviors are relevant. Moreover, a frequency capping mechanism is incorporated to correct the bias towards frequent behaviors. Offline experiments on both benchmark and a 10 billion scale real production dataset, together with an Online A/B test, show that KFAtt outperforms all compared state-of-the-arts. KFAtt has been deployed in the ranking system of a leading e commerce website, serving the main traffic of hundreds of millions of active users everyday.
88 - Keke Zhao , Xing Zhao , Qi Cao 2021
Click-Through Rate (CTR) prediction plays an important role in many industrial applications, and recently a lot of attention is paid to the deep interest models which use attention mechanism to capture user interests from historical behaviors. Howeve r, most current models are based on sequential models which truncate the behavior sequences by a fixed length, thus have difficulties in handling very long behavior sequences. Another big problem is that sequences with the same length can be quite different in terms of time, carrying completely different meanings. In this paper, we propose a non-sequential approach to tackle the above problems. Specifically, we first represent the behavior data in a sparse key-vector format, where the vector contains rich behavior info such as time, count and category. Next, we enhance the Deep Interest Network to take such rich information into account by a novel attention network. The sparse representation makes it practical to handle large scale long behavior sequences. Finally, we introduce a multidimensional partition framework to mine behavior interactions. The framework can partition data into custom designed time buckets to capture the interactions among information aggregated in different time buckets. Similarly, it can also partition the data into different categories and capture the interactions among them. Experiments are conducted on two public datasets: one is an advertising dataset and the other is a production recommender dataset. Our models outperform other state-of-the-art models on both datasets.
300 - Kai Zhang , Hao Qian , Qing Cui 2020
In the Click-Through Rate (CTR) prediction scenario, users sequential behaviors are well utilized to capture the user interest in the recent literature. However, despite being extensively studied, these sequential methods still suffer from three limi tations. First, existing methods mostly utilize attention on the behavior of users, which is not always suitable for CTR prediction, because users often click on new products that are irrelevant to any historical behaviors. Second, in the real scenario, there exist numerous users that have operations a long time ago, but turn relatively inactive in recent times. Thus, it is hard to precisely capture users current preferences through early behaviors. Third, multiple representations of users historical behaviors in different feature subspaces are largely ignored. To remedy these issues, we propose a Multi-Interactive Attention Network (MIAN) to comprehensively extract the latent relationship among all kinds of fine-grained features (e.g., gender, age and occupation in user-profile). Specifically, MIAN contains a Multi-Interactive Layer (MIL) that integrates three local interaction modules to capture multiple representations of user preference through sequential behaviors and simultaneously utilize the fine-grained user-specific as well as context information. In addition, we design a Global Interaction Module (GIM) to learn the high-order interactions and balance the different impacts of multiple features. Finally, Offline experiment results from three datasets, together with an Online A/B test in a large-scale recommendation system, demonstrate the effectiveness of our proposed approach.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا