ﻻ يوجد ملخص باللغة العربية
Astrometric observations of S-stars provide a unique opportunity to probe the nature of Sagittarius-A* (Sgr-A*). In view of this, it has become important to understand the nature and behavior of timelike bound trajectories of particles around a massive central object. It is known now that whereas the Schwarzschild black hole does not allow the negative precession for the S-stars, the naked singularity spacetimes can admit the positive as well as negative precession for the bound timelike orbits. In this context, we study the perihelion precession of a test particle in the Kerr spacetime geometry. Considering some approximations, we investigate whether the timelike bound orbits of a test particle in Kerr spacetime can have negative precession. In this paper, we only consider low eccentric timelike equatorial orbits. With these considerations, we find that in Kerr spacetimes, negative precession of timelike bound orbits is not allowed.
It is now known that the shadow is not only the property of a black hole, it can also be cast by other compact objects like naked singularities. However, there exist some novel features of the shadow of the naked singularities which are elaborately d
Accurately modeling astrophysical extreme-mass-ratio-insprials requires calculating the gravitational self-force for orbits in Kerr spacetime. The necessary calculation techniques are typically very complex and, consequently, toy scalar-field models
We consider the entanglement dynamics between two-level atoms in a rotating black hole background. In our model the two-atom system is envisaged as an open system coupled with a massless scalar field prepared in one of the physical vacuum states of i
We investigate the late-time tail of the retarded Green function for the dynamics of a linear field perturbation of Kerr spacetime. We develop an analytical formalism for obtaining the late-time tail up to arbitrary order for general integer spin of
For a stationary, axisymmetric, asymptotically flat, ultra-compact [$i.e.$ containing light-rings (LRs)] object, with a $mathbb{Z}_2$ north-south symmetry fixing an equatorial plane, we establish that the structure of timelike circular orbits (TCOs)