ترغب بنشر مسار تعليمي؟ اضغط هنا

Demographics of triple systems in dense star clusters

238   0   0.0 ( 0 )
 نشر من قبل Giacomo Fragione
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Depending on the stellar type, more than $sim 50$% and $sim 15%$ of stars in the field have at least one and two stellar companions, respectively. Hierarchical systems can be assembled dynamically in dense star clusters, as a result of few-body encounters among stars and/or compact remnants in the cluster core. In this paper, we present the demographics of stellar and compact-object triples formed via binary--binary encounters in the texttt{CMC Cluster Catalog}, a suite of cluster simulations with present-day properties representative of the globular clusters (GCs) observed in the Milky Way. We show how the initial properties of the host cluster set the typical orbital parameters and formation times of the formed triples. We find that a cluster typically assembles hundreds of triples with at least one black hole (BH) in the inner binary, while only clusters with sufficiently small virial radii are efficient in producing triples with no BHs, as a result of the BH-burning process. We show that a typical GC is expected to host tens of triples with at least one luminous component at present day. We discuss how the Lidov-Kozai mechanism can drive the inner binary of the formed triples to high eccentricities, whenever it takes place before the triple is dynamically reprocessed by encountering another cluster member. Some of these systems can reach sufficiently large eccentricities to form a variety of transients and sources, such as blue stragglers, X-ray binaries, Type Ia Supernovae, Thorne-Zytkow objects, and LIGO/Virgo sources.



قيم البحث

اقرأ أيضاً

133 - Manuel Arca Sedda 2020
The detection of gravitational waves emitted during a neutron star - black hole merger and the associated electromagnetic counterpart will provide a wealth of information about stellar evolution nuclear matter, and General Relativity. While the theor etical framework about neutron star - black hole binaries formed in isolation is well established, the picture is loosely constrained for those forming via dynamical interactions. Here, we use N-body simulations to show that mergers forming in globular and nuclear clusters could display distinctive marks compared to isolated mergers, namely larger masses, heavier black holes, and the tendency to have no associated electromagnetic counterpart. These features could represent a useful tool to interpreting forthcoming observations. In the Local Universe, gravitational waves emitted from dynamical mergers could be unravelled by detectors sensitive in the decihertz frequency band, while those occurring at the distance range of Andromeda and the Virgo Cluster could be accessible to lower-frequency detectors like LISA.
Star clusters appear to be the ideal environment for the assembly of neutron star-neutron star (NS-NS) and black hole-neutron star (BH-NS) binaries. These binaries are among the most interesting astrophysical objects, being potential sources of gravi tational waves (GWs) and gamma-ray bursts. We use for the first time high-precision N-body simulations of young massive and open clusters to study the origin and dynamical evolution of NSs, within clusters with different initial masses, metallicities, primordial binary fractions, and prescriptions for the compact object natal kicks at birth. We find that the radial profile of NSs is shaped by the BH content of the cluster, which partially quenches the NS segregation due to the BH-burning process. This leaves most of the NSs out of the densest cluster regions, where NS-NS and BH-NS binaries could potentially form. Due to a large velocity kick that they receive at birth, most of the NSs escape the host clusters, with the bulk of their retained population made up of NSs of $sim 1.3$ M$_odot$ coming from the electron-capture supernova process. The details of the primordial binary fraction and pairing can smear out this trend. Finally, we find that a subset of our models produce NS-NS mergers, leading to a rate of $sim 0.01$--$0.1$ Gpc$^{-3}$ yr$^{-1}$ in the local Universe, and compute an upper limit of $sim 3times 10^{-2}$--$3times 10^{-3}$ Gpc$^{-3}$ yr$^{-1}$ for the BH-NS merger rate. Our estimates are several orders of magnitude smaller than the current empirical merger rate from LIGO/Virgo, in agreement with the recent rate estimates for old globular clusters.
As self-gravitating systems, dense star clusters exhibit a natural diffusion of energy from their innermost to outermost regions, which leads to a slow and steady contraction of the core until it ultimately collapses under gravity. However, in spite of the natural tendency toward so-called core collapse, the globular clusters (GCs) in the Milky Way exhibit a well-observed bimodal distribution in core radii separating the core-collapsed and non-core-collapsed clusters. This suggests an internal energy source is at work, delaying the onset of core collapse in many clusters. Primordial binary stars have been thought for a long time to provide this energy source, but recent analyses have cast doubt upon the corresponding binary-burning mechanism as a viable explanation. Over the past decade, a large amount of both observational and theoretical work has suggested that many stellar-mass black holes (BHs) are retained in typical clusters today and that they play a dynamically-significant role in these clusters throughout their entire lifetimes. Here we review our latest understanding of the formation and evolution of BH populations in GCs and demonstrate that, through their dynamical interaction with their host cluster, BHs can naturally explain the distinction between core-collapsed and non-core-collapsed clusters through a process we call black hole burning.
Stellar encounters potentially affect the evolution of the protoplanetary discs in the Orion Nebula Cluster (ONC). However, the role of encounters in other cluster environments is less known. We investigate the effect of the encounter-induced disc-ma ss loss in different cluster environments. Starting from an ONC-like cluster we vary the cluster size and density to determine the correlation of collision time scale and disc-mass loss. We use the NBODY6++ code to model the dynamics of these clusters and analyze the effect of star-disc encounters. We find that the disc-mass loss depends strongly on the cluster density but remains rather unaffected by the size of the stellar population. The essential outcome of the simulations are: i) Even in clusters four times sparser than the ONC the effect of encounters is still apparent. ii) The density of the ONC itself marks a threshold: in less dense and less massive clusters it is the massive stars that dominate the encounter-induced disc-mass loss whereas in denser and more massive clusters the low-mass stars play the major role for the disc mass removal. It seems that in the central regions of young dense star clusters -- the common sites of star formation -- stellar encounters do affect the evolution of the protoplanetary discs. With higher cluster density low-mass stars become more heavily involved in this process. This finding allows for the extrapolation towards extreme stellar systems: in case of the Arches cluster one would expect stellar encounters to destroy the discs of most of the low- and high-mass stars in several hundred thousand years, whereas intermediate mass stars are able to retain to some extant their discs even under these harsh environmental conditions.
Field stars are frequently formed in pairs, and many of these binaries are part of triples or even higher-order systems. Even though, the principles of single stellar evolution and binary evolution, have been accepted for a long time, the long-term e volution of stellar triples is poorly understood. The presence of a third star in an orbit around a binary system can significantly alter the evolution of those stars and the binary system. The rich dynamical behavior in three-body systems can give rise to Lidov-Kozai cycles, in which the eccentricity of the inner orbit and the inclination between the inner and outer orbit vary periodically. In turn, this can lead to an enhancement of tidal effects (tidal friction), gravitational-wave emission and stellar interactions such as mass transfer and collisions. The lack of a self-consistent treatment of triple evolution, including both three-body dynamics as well as stellar evolution, hinders the systematic study and general understanding of the long-term evolution of triple systems. In this paper, we aim to address some of these hiatus, by discussing the dominant physical processes of hierarchical triple evolution, and presenting heuristic recipes for these processes. To improve our understanding on hierarchical stellar triples, these descriptions are implemented in a public source code TrES which combines three-body dynamics (based on the secular approach) with stellar evolution and their mutual influences. Note that modeling through a phase of stable mass transfer in an eccentric orbit is currently not implemented in TrES , but can be implemented with the appropriate methodology at a later stage.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا