ﻻ يوجد ملخص باللغة العربية
The solid material of protoplanetary discs forms an asymmetric pattern around a low-mass planet (M_p<=10M_Earth) due to the combined effect of dust-gas interaction and the gravitational attraction of the planet. Recently, it has been shown that although the total solid mass is negligible compared to that of gas in protoplanetary discs, a positive torque can be emerged by a certain size solid species. The torque magnitude can overcome that of gas which may result in outward planetary migration. In this study, we show that the accretion of solid species by the planet strengthens the magnitude of solid torque being either positive or negative. We run two-dimensional, high-resolution (1.5Kx3K) global hydrodynamic simulations of an embedded low-mass planet in a protoplanetary disc. The solid material is handled as a pressureless fluid. Strong accretion of well-coupled solid species by a M_p<0.3M_Earth protoplanet results in the formation of such a strongly asymmetric solid pattern close to the planet that the positive solid torque can overcome that of gas by two times. However, the accretion of solids in the pebble regime results in increased magnitude negative torque felt by protoplanets and strengthened positive torque for Earth-mass planets. For M_p>=3M_Earth planets the magnitude of the solid torque is positive, however, independent of the accretion strength investigated. We conclude that the migration of solid accreting planets can be substantially departed from the canonical type-I prediction.
We present the results of hydrodynamical simulations of the orbital evolution of planets undergoing runaway gas accretion in radiative discs. We consider accreting disc models with constant mass flux through the disc, and where radiative cooling bala
The recent high spatial/spectral resolution observations have enabled constraining formation mechanisms of giant planets, especially at the final stages. The current interpretation of such observations is that these planets undergo magnetospheric acc
The migration of low-mass planets is driven by the differential Lindblad torque and the corotation torque in non-magnetic viscous models of protoplanetary discs. The corotation torque has recently received detailed attention as it may slow down, stal
We study torques on migrating low-mass planets in locally isothermal discs. Previous work on low-mass planets generally kept the planet on a fixed orbit, after which the torque on the planet was measured. In addition to these static torques, when the
A key process in planet formation is the exchange of angular momentum between a growing planet and the protoplanetary disc, which makes the planet migrate through the disc. Several works show that in general low-mass and intermediate-mass planets mig