ﻻ يوجد ملخص باللغة العربية
We study the stability of relativistic stars in scalar-tensor theories with a nonminimal coupling of the form $F(phi)R$, where $F$ depends on a scalar field $phi$ and $R$ is the Ricci scalar. On a spherically symmetric and static background, we incorporate a perfect fluid minimally coupled to gravity as a form of the Schutz-Sorkin action. The odd-parity perturbation for the multipoles $l geq 2$ is ghost-free under the condition $F(phi)>0$, with the speed of gravity equivalent to that of light. For even-parity perturbations with $l geq 2$, there are three propagating degrees of freedom arising from the perfect-fluid, scalar-field, and gravity sectors. For $l=0, 1$, the dynamical degrees of freedom reduce to two modes. We derive no-ghost conditions and the propagation speeds of these perturbations and apply them to concrete theories of hairy relativistic stars with $F(phi)>0$. As long as the perfect fluid satisfies a weak energy condition with a positive propagation speed squared $c_m^2$, there are neither ghost nor Laplacian instabilities for theories of spontaneous scalarization and Brans-Dicke (BD) theories with a BD parameter $omega_{rm BD}>-3/2$ (including $f(R)$ gravity). In these theories, provided $0<c_m^2 le 1$, we show that all the propagation speeds of even-parity perturbations are sub-luminal inside the star, while the speeds of gravity outside the star are equivalent to that of light.
Gravitational theories with multiple scalar fields coupled to the metric and each other --- a natural extension of the well studied single-scalar-tensor theories --- are interesting phenomenological frameworks to describe deviations from general rela
In this work we shall study the implications of a subclass of $E$-models cosmological attractors, namely of $a$-attractors, on hydrodynamically stable slowly rotating neutron stars. Specifically, we shall present the Jordan frame theory of the $a$-at
In $f(R)$ gravity and Brans-Dicke theory with scalar potentials, we study the structure of neutron stars on a spherically symmetric and static background for two equations of state: SLy and FPS. In massless BD theory, the presence of a scalar couplin
We study the viability conditions for the absence of ghost, gradient and tachyonic instabilities, in scalar-torsion $f(T,phi)$ gravity theories in the presence of a general barotropic perfect fluid. To describe the matter sector, we use the Sorkin-Sc
In scalar-vector-tensor theories with $U(1)$ gauge invariance, it was recently shown that there exists a new type of hairy black hole (BH) solutions induced by a cubic-order scalar-vector interaction. In this paper, we derive conditions for the absen