ترغب بنشر مسار تعليمي؟ اضغط هنا

Open-end nonparametric sequential change-point detection based on the retrospective CUSUM statistic

80   0   0.0 ( 0 )
 نشر من قبل Ivan Kojadinovic
 تاريخ النشر 2020
  مجال البحث الاحصاء الرياضي
والبحث باللغة English




اسأل ChatGPT حول البحث

The aim of online monitoring is to issue an alarm as soon as there is significant evidence in the collected observations to suggest that the underlying data generating mechanism has changed. This work is concerned with open-end, nonparametric procedures that can be interpreted as statistical tests. The proposed monitoring schemes consist of computing the so-called retrospective CUSUM statistic (or minor variations thereof) after the arrival of each new observation. After proposing suitable threshold functions for the chosen detectors, the asymptotic validity of the procedures is investigated in the special case of monitoring for changes in the mean, both under the null hypothesis of stationarity and relevant alternatives. To carry out the sequential tests in practice, an approach based on an asymptotic regression model is used to estimate high quantiles of relevant limiting distributions. Monte Carlo experiments demonstrate the good finite-sample behavior of the proposed monitoring schemes and suggest that they are superior to existing competitors as long as changes do not occur at the very beginning of the monitoring. Extensions to statistics exhibiting an asymptotic mean-like behavior are briefly discussed. Finally, the application of the derived sequential change-point detection tests is succinctly illustrated on temperature anomaly data.



قيم البحث

اقرأ أيضاً

A novel sequential change detection problem is proposed, in which the change should be not only detected but also accelerated. Specifically, it is assumed that the sequentially collected observations are responses to treatments selected in real time. The assigned treatments not only determine the pre-change and post-change distributions of the responses, but also influence when the change happens. The problem is to find a treatment assignment rule and a stopping rule that minimize the expected total number of observations subject to a user-specified bound on the false alarm probability. The optimal solution to this problem is obtained under a general Markovian change-point model. Moreover, an alternative procedure is proposed, whose applicability is not restricted to Markovian change-point models and whose design requires minimal computation. For a large class of change-point models, the proposed procedure is shown to achieve the optimal performance in an asymptotic sense. Finally, its performance is found in two simulation studies to be close to the optimal, uniformly with respect to the error probability.
Inference on vertex-aligned graphs is of wide theoretical and practical importance.There are, however, few flexible and tractable statistical models for correlated graphs, and even fewer comprehensive approaches to parametric inference on data arisin g from such graphs. In this paper, we consider the correlated Bernoulli random graph model (allowing different Bernoulli coefficients and edge correlations for different pairs of vertices), and we introduce a new variance-reducing technique -- called emph{balancing} -- that can refine estimators for model parameters. Specifically, we construct a disagreement statistic and show that it is complete and sufficient; balancing can be interpreted as Rao-Blackwellization with this disagreement statistic. We show that for unbiased estimators of functions of model parameters, balancing generates uniformly minimum variance unbiased estimators (UMVUEs). However, even when unbiased estimators for model parameters do {em not} exist -- which, as we prove, is the case with both the heterogeneity correlation and the total correlation parameters -- balancing is still useful, and lowers mean squared error. In particular, we demonstrate how balancing can improve the efficiency of the alignment strength estimator for the total correlation, a parameter that plays a critical role in graph matchability and graph matching runtime complexity.
74 - Shanshan Cao , Yao Xie 2016
From a sequence of similarity networks, with edges representing certain similarity measures between nodes, we are interested in detecting a change-point which changes the statistical property of the networks. After the change, a subset of anomalous n odes which compares dissimilarly with the normal nodes. We study a simple sequential change detection procedure based on node-wise average similarity measures, and study its theoretical property. Simulation and real-data examples demonstrate such a simply stopping procedure has reasonably good performance. We further discuss the faulty sensor isolation (estimating anomalous nodes) using community detection.
Assuming that data are collected sequentially from independent streams, we consider the simultaneous testing of multiple binary hypotheses under two general setups; when the number of signals (correct alternatives) is known in advance, and when we on ly have a lower and an upper bound for it. In each of these setups, we propose feasible procedures that control, without any distributional assumptions, the familywise error probabilities of both type I and type II below given, user-specified levels. Then, in the case of i.i.d. observations in each stream, we show that the proposed procedures achieve the optimal expected sample size, under every possible signal configuration, asymptotically as the two error probabilities vanish at arbitrary rates. A simulation study is presented in a completely symmetric case and supports insights obtained from our asymptotic results, such as the fact that knowledge of the exact number of signals roughly halves the expected number of observations compared to the case of no prior information.
We consider the problem of constructing nonparametric undirected graphical models for high-dimensional functional data. Most existing statistical methods in this context assume either a Gaussian distribution on the vertices or linear conditional mean s. In this article we provide a more flexible model which relaxes the linearity assumption by replacing it by an arbitrary additive form. The use of functional principal components offers an estimation strategy that uses a group lasso penalty to estimate the relevant edges of the graph. We establish statistical guarantees for the resulting estimators, which can be used to prove consistency if the dimension and the number of functional principal components diverge to infinity with the sample size. We also investigate the empirical performance of our method through simulation studies and a real data application.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا