ترغب بنشر مسار تعليمي؟ اضغط هنا

Symplectic Microgeometry IV: Quantization

74   0   0.0 ( 0 )
 نشر من قبل Benoit Dherin
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We construct a special class of semiclassical Fourier integral operators whose wave fronts are symplectic micromorphisms. These operators have very good properties: they form a category on which the wave front map becomes a functor into the cotangent microbundle category, and they admit a total symbol calculus in terms of symplectic micromorphisms enhanced with half-density germs. This new operator category encompasses the semi-classical pseudo-differential calculus and offers a functorial framework for the semi-classical analysis of the Schrodinger equation. We also comment on applications to classical and quantum mechanics as well as to a functorial and geometrical approach to the quantization of Poisson manifolds.



قيم البحث

اقرأ أيضاً

We introduce a method of geometric quantization for compact $b$-symplectic manifolds in terms of the index of an Atiyah-Patodi-Singer (APS) boundary value problem. We show further that b-symplectic manifolds have canonical Spin-c structures in the us ual sense, and that the APS index above coincides with the index of the Spin-c Dirac operator. We show that if the manifold is endowed with a Hamiltonian action of a compact connected Lie group with non-zero modular weights, then this method satisfies the Guillemin-Sternberg ``quantization commutes with reduction property. In particular our quantization coincides with the formal quantization defined by Guillemin, Miranda and Weitsman, providing a positive answer to a question posed in their paper.
387 - Claude Viterbo 2014
Let $H(q,p)$ be a Hamiltonian on $T^*T^n$. We show that the sequence $H_{k}(q,p)=H(kq,p)$ converges for the $gamma$ topology defined by the author, to $bar{H}(p)$. This is extended to the case where only some of the variables are homogenized, that is the sequence $H(kx,y,q,p)$ where the limit is of the type ${bar H}(y,q,p)$ and thus yields an effective Hamiltonian. We give here the proof of the convergence, and the first properties of the homogenization operator, and give some immediate consequences for solutions of Hamilton-Jacobi equations, construction of quasi-states, etc. We also prove that the function $bar H$ coincides with Mathers $alpha$ function which gives a new proof of its symplectic invariance proved by P. Bernard. A previous version of this paper relied on the former On the capacity of Lagrangians in $T^*T^n$ which has been withdrawn. The present version of Symplectic Homogenization does not rely on it anymore.
318 - Yael Karshon , Xiudi Tang 2021
We say that a subset of a symplectic manifold is symplectically (neighbourhood) excisable if its complement is symplectomorphic to the ambient manifold, (through a symplectomorphism that can be chosen to be the identity outside an arbitrarily small n eighbourhood of the subset). We use time-independent Hamiltonian flows, and their iterations, to show that certain properly embedded subsets of noncompact symplectic manifolds are symplectically neighbourhood excisable: a ray, a Cantor brush, a box with a tail, and -- more generally -- epigraphs of lower semi-continuous functions; as well as a ray with two horns, and -- more generally -- open-rooted finite trees.
We give characterizations of a finite group $G$ acting symplectically on a rational surface ($mathbb{C}P^2$ blown up at two or more points). In particular, we obtain a symplectic version of the dichotomy of $G$-conic bundles versus $G$-del Pezzo surf aces for the corresponding $G$-rational surfaces, analogous to a classical result in algebraic geometry. Besides the characterizations of the group $G$ (which is completely determined for the case of $mathbb{C}P^2# Noverline{mathbb{C}P^2}$, $N=2,3,4$), we also investigate the equivariant symplectic minimality and equivariant symplectic cone of a given $G$-rational surface.
173 - Kyler Siegel 2019
We construct a new family of symplectic capacities indexed by certain symmetric polynomials, defined using rational symplectic field theory. We prove various structural properties of the capacities and discuss the connections with the equivariant L-i nfinity structure on symplectic cohomology and curve counts with tangency conditions. We also give some preliminary computations in basic examples and show that they give new state of the art symplectic embedding obstructions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا