ﻻ يوجد ملخص باللغة العربية
High-frequency long-baseline experiments with the Atacama Large Millimeter/submillimeter Array were organized to test the high angular resolution imaging capabilities in the submillimeter wave regime using baselines up to 16 km. Four experiments were conducted, two Band 7 (289 GHz) and two Band 8 (405 GHz) observations. Phase correction using band-to-band (B2B) phase referencing was used with a phase calibrator only 0.7deg away observed in Band 3 (96 GHz) and Band 4 (135 GHz), respectively. In Band 8, we achieved the highest resolution of 14x11 mas. We compared the synthesis images of the target quasar using 20 and 60 s switching cycle times in the phase referencing. In Band 7, the atmosphere had good stability in phase rms (<0.5 rad over 2 minutes), and there was little difference in image coherence between the 20 and 60 s switching cycle times. One Band 8 experiment was conducted under a worse phase rms condition (>1 rad over 2 minutes), which led to a significantly reduced coherence when using the 60 s switching cycle time. One of our four experiments indicates that the residual phase rms error after phase referencing can be reduced to 0.16 rad at 289 GHz in using the 20 s switching cycle time. Such conditions would meet the phase correction requirement of image coherence of >70% in Band 10, assuming a similar phase calibrator separation angle, emphasizing the need for such B2B phase referencing observing at high frequencies.
In 2017, an Atacama Large Millimeter/submillimeter Array (ALMA) high-frequency long baseline campaign was organized to test image capabilities with baselines up to 16 km at submillimeter (submm) wavelengths. We investigated image qualities using ALMA
The Atacama Large millimeter/submillimeter Array (ALMA) obtains spatial resolutions of 15 to 5 milli-arcsecond (mas) at 275-950GHz (0.87-0.32mm) with 16km baselines. Calibration at higher-frequencies is challenging as ALMA sensitivity and quasar dens
This paper presents the first detailed investigation of the characteristics of mm/submm phase fluctuation and phase correction methods obtained using ALMA with baseline lengths up to ~15 km. Most of the spatial structure functions (SSFs) show that th
We discuss the science drivers for ALMA Band 2 which spans the frequency range from 67 to 90 GHz. The key science in this frequency range are the study of the deuterated molecules in cold, dense, quiescent gas and the study of redshifted emission fro
We investigate the imaging performance of an interferometric array in the case of wide field, high resolution, narrow band, snapshot imaging. We find that, when uv-cell sizes are sufficiently small (ie. image sizes are sufficiently large), each insta