ﻻ يوجد ملخص باللغة العربية
In this paper, we study the model of the late universe with the homogeneous, isotropic and flat Friedmann-Robertson-Walker metric, where the source of the gravitational field is based on the fermion and boson field, with the Maxwell term $F_{mu u}F^{mu u} $ in four dimensions. The actuation of the Maxwell term for the Einstein gravity makes it possible to find new approaches to solve the problem of the observed accelerated expansion of the universe. Energy conditions have been obtained and studied. These conditions impose very simple and model-independent restrictions on the behaviour of energy density and pressure since they do not require a specific equation of state of matter. To consider the model, the energy conditions NEC, WEC, DEC are realized, and the SEC condition is violated. The boson and fermion fields are responsible for the accelerated regime at early times, but since the total pressure is tending toward zero for large times, a transition to a decelerated regime occurs. Maxwell field is crucial only in the early times.
We calculate the cosmological complexity under the framework of scalar curvature perturbations for a K-essence model with constant potential. In particular, the squeezed quantum states are defined by acting a two-mode squeezed operator which is chara
We find a new homogeneous solution to the Einstein-Maxwell equations with a cosmological term. The spacetime manifold is $R times S^3$. The spacetime metric admits a simply transitive isometry group $G = R times SU(2)$ of isometries and is of Petrov
We present a general solution of the coupled Einstein-Maxwell field equations (without the source charges and currents) in three spacetime dimensions. We also admit any value of the cosmological constant. The whole family of such $Lambda$-electrovacu
We obtain a full characterization of Einstein-Maxwell $p$-form solutions $(boldsymbol{g},boldsymbol{F})$ in $D$-dimensions for which all higher-order corrections vanish identically. These thus simultaneously solve a large class of Lagrangian theories
We construct stationary solutions to the Einstein-Maxwell-current system by using the Sasakian manifold for the three-dimensional space. Both the magnetic field and the electric current in the solution are specified by the contact form of the Sasakia