ﻻ يوجد ملخص باللغة العربية
Few-shot learning methods operate in low data regimes. The aim is to learn with few training examples per class. Although significant progress has been made in few-shot image classification, few-shot video recognition is relatively unexplored and methods based on 2D CNNs are unable to learn temporal information. In this work we thus develop a simple 3D CNN baseline, surpassing existing methods by a large margin. To circumvent the need of labeled examples, we propose to leverage weakly-labeled videos from a large dataset using tag retrieval followed by selecting the best clips with visual similarities, yielding further improvement. Our results saturate current 5-way benchmarks for few-shot video classification and therefore we propose a new challenging benchmark involving more classes and a mixture of classes with varying supervision.
The goal of few-shot video classification is to learn a classification model with good generalization ability when trained with only a few labeled videos. However, it is difficult to learn discriminative feature representations for videos in such a s
Few-shot video classification aims to learn new video categories with only a few labeled examples, alleviating the burden of costly annotation in real-world applications. However, it is particularly challenging to learn a class-invariant spatial-temp
We address the task of unsupervised retargeting of human actions from one video to another. We consider the challenging setting where only a few frames of the target is available. The core of our approach is a conditional generative model that can tr
We introduce Few-Shot Video Object Detection (FSVOD) with three important contributions: 1) a large-scale video dataset FSVOD-500 comprising of 500 classes with class-balanced videos in each category for few-shot learning; 2) a novel Tube Proposal Ne
Many Few-Shot Learning research works have two stages: pre-training base model and adapting to novel model. In this paper, we propose to use closed-form base learner, which constrains the adapting stage with pre-trained base model to get better gener