ﻻ يوجد ملخص باللغة العربية
The Landau equations give a physically useful criterion for how singularities arise in Feynman amplitudes. Furthermore, they are fundamental to the uses of perturbative QCD, by determining the important regions of momentum space in asymptotic problems. Generalizations are also useful. We will show that in existing treatments there are significant gaps in derivations, and in some cases implicit assumptions that will be shown here to be false in important cases like the massless Feynman graphs ubiquitous in QCD applications. In this paper is given a new proof that the Landau condition is both necessary and sufficient for physical-region pinches in the kinds of integral typified by Feynman graphs. The proofs range is broad enough to include the modified Feynman graphs that are used in QCD applications. Unlike many existing derivations, there is no need to use the Feynman parameter method. Some possible further applications of the new proof and its subsidiary results are proposed.
We consider the analytic properties of Feynman integrals from the perspective of general A-discriminants and A-hypergeometric functions introduced by Gelfand,Kapranov and Zelevinsky (GKZ). This enables us, to give a clear and mathematically rigour de
We consider families of multiple and simple integrals of the ``Ising class and the linear ordinary differential equations with polynomial coefficients they are solutions of. We compare the full set of singularities given by the roots of the head poly
A new approach to compute Feynman Integrals is presented. It relies on an integral representation of a given Feynman Integral in terms of simpler ones. Using this approach, we present, for the first time, results for a certain family of non-planar fi
Over the last year significant progress was made in the understanding of the computation of Feynman integrals using differential equations. These lectures give a review of these developments, while not assuming any prior knowledge of the subject. Aft
Integration-by-parts identities between loop integrals arise from the vanishing integration of total derivatives in dimensional regularization. Generic choices of total derivatives in the Baikov or parametric representations lead to identities which