ﻻ يوجد ملخص باللغة العربية
We discuss when homogeneous quasipositive links are positive. In particular, we show that a homogeneous diagram of a quasipositive link whose number of Seifert circles is equal to the braid index is a positive diagram.
We prove that any link admitting a diagram with a single negative crossing is strongly quasipositive. This answers a question of Stoimenows in the (strong) positive. As a second main result, we give simple and complete characterizations of link diagr
We give a new, conceptually simpler proof of the fact that knots in $S^3$ with positive L-space surgeries are fibered and strongly quasipositive. Our motivation for doing so is that this new proof uses comparatively little Heegaard Floer-specific mac
Let $n$ be a positive integer. The aim of this paper is to study two local moves $V(n)$ and $V^{n}$ on welded links, which are generalizations of the crossing virtualization. We show that the $V(n)$-move is an unknotting operation on welded knots for
Twisted torus links are given by twisting a subset of strands on a closed braid representative of a torus link. T--links are a natural generalization, given by repeated positive twisting. We establish a one-to-one correspondence between positive brai
We introduce a new equivalence relation on decorated ribbon graphs, and show that its equivalence classes directly correspond to virtual links. We demonstrate how this correspondence can be used to convert any invariant of virtual links into an invariant of ribbon graphs, and vice versa.