ﻻ يوجد ملخص باللغة العربية
We present the discoveries of WISEA J041451.67-585456.7 and WISEA J181006.18-101000.5, two low-temperature (1200$-$1400 K), high proper motion T-type subdwarfs. Both objects were discovered via their high proper motion ($>$0.5 arcsec yr$^{-1}$); WISEA J181006.18-101000.5 as part of the NEOWISE proper motion survey and WISEA J041451.67-585456.7 as part of the citizen science project Backyard Worlds; Planet 9. We have confirmed both as brown dwarfs with follow-up near-infrared spectroscopy. Their spectra and near-infrared colors are unique amongst known brown dwarfs, with some colors consistent with L-type brown dwarfs and other colors resembling those of the latest-type T dwarfs. While no forward model consistently reproduces the features seen in their near-infrared spectra, the closest matches suggest very low metallicities ([Fe/H] $leq$ -1), making these objects likely the first examples of extreme subdwarfs of the T spectral class (esdT). WISEA J041451.67-585456.7 and WISEA J181006.18-101000.5 are found to be part of a small population of objects that occupy the substellar transition zone, and have the lowest masses and effective temperatures of all objects in this group.
We present the discovery of WISEA J083011.95+283716.0, the first Y dwarf candidate identified through the Backyard Worlds: Planet 9 citizen science project. We identified this object as a red, fast-moving source with a faint $W2$ detection in multi-e
Continued follow-up of WISEA J153429.75-104303.3, announced in Meisner et al (2020), has proven it to have an unusual set of properties. New imaging data from Keck/MOSFIRE and HST/WFC3 show that this object is one of the few faint proper motion sourc
Schneider et al. (2020) presented the discovery of WISEA J041451.67-585456.7 and WISEA J181006.18-101000.5, which appear to be the first examples of extreme T-type subdwarfs (esdTs; metallicity <= -1 dex, T_eff <= 1400 K). Here we present new discove
Residual gas in disks around young stars can spin down stars, circularize the orbits of terrestrial planets, and whisk away the dusty debris that is expected to serve as a signpost of terrestrial planet formation. We have carried out a sensitive sear
Quantifying the evolution of stellar extreme ultraviolet (EUV, 100 -- 1000 $overset{circ}{A}$) emission is critical for assessing the evolution of planetary atmospheres and the habitability of M dwarf systems. Previous studies from the HAbitable Zone