ترغب بنشر مسار تعليمي؟ اضغط هنا

Advancing Drug Resistance Research Through Quantitative Modeling and Synthetic Biology

202   0   0.0 ( 0 )
 نشر من قبل Daniel Charlebois
 تاريخ النشر 2020
  مجال البحث علم الأحياء فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Antimicrobial resistance is an emerging global health crisis that is undermining advances in modern medicine and, if unmitigated, threatens to kill 10 million people per year worldwide by 2050. Research over the last decade has demonstrated that the differences between genetically identical cells in the same environment can lead to drug resistance. Fluctuations in gene expression, modulated by gene regulatory networks, can lead to non-genetic heterogeneity that results in the fractional killing of microbial populations causing drug therapies to fail; this non-genetic drug resistance can enhance the probability of acquiring genetic drug resistance mutations. Mathematical models of gene networks can elucidate general principles underlying drug resistance, predict the evolution of resistance, and guide drug resistance experiments in the laboratory. Cells genetically engineered to carry synthetic gene networks regulating drug resistance genes allow for controlled, quantitative experiments on the role of non-genetic heterogeneity in the development of drug resistance. In this perspective article, we emphasize the contributions that mathematical, computational, and synthetic gene network models play in advancing our understanding of antimicrobial resistance to discover effective therapies against drug-resistant infections.



قيم البحث

اقرأ أيضاً

Although reproducibility is a core tenet of the scientific method, it remains challenging to reproduce many results. Surprisingly, this also holds true for computational results in domains such as systems biology where there have been extensive stand ardization efforts. For example, Tiwari et al. recently found that they could only repeat 50% of published simulation results in systems biology. Toward improving the reproducibility of computational systems research, we identified several resources that investigators can leverage to make their research more accessible, executable, and comprehensible by others. In particular, we identified several domain standards and curation services, as well as powerful approaches pioneered by the software engineering industry that we believe many investigators could adopt. Together, we believe these approaches could substantially enhance the reproducibility of systems biology research. In turn, we believe enhanced reproducibility would accelerate the development of more sophisticated models that could inform precision medicine and synthetic biology.
Numerous biological approaches are available to characterise the mechanisms which govern the formation of human embryonic stem cell (hESC) colonies. To understand how the kinematics of single and pairs of hESCs impact colony formation, we study their mobility characteristics using time-lapse imaging. We perform a detailed statistical analysis of their speed, survival, directionality, distance travelled and diffusivity. We confirm that single and pairs of cells migrate as a diffusive random walk. Moreover, we show that the presence of Cell Tracer significantly reduces hESC mobility. Our results open the path to employ the theoretical framework of the diffusive random walk for the prognostic modelling and optimisation of the growth of hESC colonies. Indeed, we employ this random walk model to estimate the seeding density required to minimise the occurrence of hESC colonies arising from more than one founder cell and the minimal cell number needed for successful colony formation. We believe that our prognostic model can be extended to investigate the kinematic behaviour of somatic cells emerging from hESC differentiation and to enable its wide application in phenotyping of pluripotent stem cells for large scale stem cell culture expansion and differentiation platforms.
A quantitative description of the flagellar dynamics in the procyclic T. brucei is presented in terms of stationary oscillations and traveling waves. By using digital video microscopy to quantify the kinematics of trypanosome flagellar waveforms. A t heoretical model is build starting from a Bernoulli-Euler flexural-torsional model of an elastic string with internal distribution of force and torque. The dynamics is internally driven by the action of the molecular motors along the string, which is proportional to the local shift and consequently to the local curvature. The model equation is a nonlinear partial differential wave equation of order four, containing nonlinear terms specific to the Korteweg-de Vries (KdV) equation and the modified-KdV equation. For different ranges of parameters we obtained kink-like solitons, breather solitons, and a new class of solutions constructed by smoothly piece-wise connected conic functions arcs (e.g. ellipse). The predicted amplitude and wavelengths are in good match with experiments. We also present the hypotheses for a step-wise kinematical model of swimming of procyclic African trypanosome.
Brain tumours are masses of abnormal cells that can grow in an uncontrolled way in the brain. There are different types of malignant brain tumours. Gliomas are malignant brain tumours that grow from glial cells and are identified as astrocytoma, olig odendroglioma, and ependymoma. We study a mathematical model that describes glia-neuron interaction, glioma, and chemotherapeutic agent. In this work, we consider drug sensitive and resistant glioma cells. We show that continuous and pulsed chemotherapy can kill glioma cells with a minimal loss of neurons.
Synthetic biology is the engineering of cellular networks. It combines principles of engineering and the knowledge of biological networks to program the behavior of cells. Computational modeling techniques in conjunction with molecular biology techni ques have been successful in constructing biological devices such as switches, oscillators, and gates. The ambition of synthetic biology is to construct complex systems from such fundamental devices, much in the same way electronic circuits are built from basic parts. As this ambition becomes a reality, engineering concepts such as interchangeable parts and encapsulation will find their way into biology. We realize that there is a need for computational tools that would support such engineering concepts in biology. As a solution, we have developed the software Athena that allows biological models to be constructed as modules. Modules can be connected to one another without altering the modules themselves. In addition, Athena houses various tools useful for designing synthetic networks including tools to perform simulations, automatically derive transcription rate expressions, and view and edit synthetic DNA sequences. New tools can be incorporated into Athena without modifying existing program via a plugin interface, IronPython scripts, Systems Biology Workbench interfacing and the R statistical language. The program is currently for Windows operating systems, and the source code for Athena is made freely available through CodePlex, www.codeplex.com/athena.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا