ﻻ يوجد ملخص باللغة العربية
Antimicrobial resistance is an emerging global health crisis that is undermining advances in modern medicine and, if unmitigated, threatens to kill 10 million people per year worldwide by 2050. Research over the last decade has demonstrated that the differences between genetically identical cells in the same environment can lead to drug resistance. Fluctuations in gene expression, modulated by gene regulatory networks, can lead to non-genetic heterogeneity that results in the fractional killing of microbial populations causing drug therapies to fail; this non-genetic drug resistance can enhance the probability of acquiring genetic drug resistance mutations. Mathematical models of gene networks can elucidate general principles underlying drug resistance, predict the evolution of resistance, and guide drug resistance experiments in the laboratory. Cells genetically engineered to carry synthetic gene networks regulating drug resistance genes allow for controlled, quantitative experiments on the role of non-genetic heterogeneity in the development of drug resistance. In this perspective article, we emphasize the contributions that mathematical, computational, and synthetic gene network models play in advancing our understanding of antimicrobial resistance to discover effective therapies against drug-resistant infections.
Although reproducibility is a core tenet of the scientific method, it remains challenging to reproduce many results. Surprisingly, this also holds true for computational results in domains such as systems biology where there have been extensive stand
Numerous biological approaches are available to characterise the mechanisms which govern the formation of human embryonic stem cell (hESC) colonies. To understand how the kinematics of single and pairs of hESCs impact colony formation, we study their
A quantitative description of the flagellar dynamics in the procyclic T. brucei is presented in terms of stationary oscillations and traveling waves. By using digital video microscopy to quantify the kinematics of trypanosome flagellar waveforms. A t
Brain tumours are masses of abnormal cells that can grow in an uncontrolled way in the brain. There are different types of malignant brain tumours. Gliomas are malignant brain tumours that grow from glial cells and are identified as astrocytoma, olig
Synthetic biology is the engineering of cellular networks. It combines principles of engineering and the knowledge of biological networks to program the behavior of cells. Computational modeling techniques in conjunction with molecular biology techni