ترغب بنشر مسار تعليمي؟ اضغط هنا

Rank inequalities for the Heegaard Floer homology of branched covers

165   0   0.0 ( 0 )
 نشر من قبل Robert Lipshitz
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Given a double cover between 3-manifolds branched along a nullhomologous link, we establish an inequality between the dimensions of their Heegaard Floer homologies. We discuss the relationship with the L-space conjecture and give some other topological applications, as well as an analogous result for sutured Floer homology.



قيم البحث

اقرأ أيضاً

160 - Eaman Eftekhary 2013
We show that if K is a non-trivial knot inside a homology sphere Y, then the rank of knot Floer homology associated with K is strictly bigger than the rank of Heegaard Floer homology of Y.
We construct Heegaard Floer theory for 3-manifolds with connected boundary. The theory associates to an oriented, parametrized two-manifold a differential graded algebra. For a three-manifold with parametrized boundary, the invariant comes in two differe
143 - Eaman Eftekhary 2008
We give a precise description of splicing formulas from a previous paper in terms of knot Floer complex associated with a knot in homology sphere.
232 - Eaman Eftekhary 2008
Using the combinatorial approach to Heegaard Floer homology we obtain a relatively easy formula for computation of hat Heegaard Floer homology for the three-manifold obtained by rational surgery on a knot K inside a homology sphere Y.
109 - Elden Elmanto , Igor Kriz 2016
We present some non-trivial calculations of Baldwin-Ozsv{a}th-Szab{o} cohomology of links, and applications to Heegaard-Floer homology of branched double covers.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا