ترغب بنشر مسار تعليمي؟ اضغط هنا

Graph approach to quantum teleportation dynamics

186   0   0.0 ( 0 )
 نشر من قبل Angel S. Sanz
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Quantum teleportation plays a key role in modern quantum technologies. Thus, it is of much interest to generate alternative approaches or representations aimed at allowing us a better understanding of the physics involved in the process from different perspectives. With this purpose, here an approach based on graph theory is introduced and discussed in the context of some applications. Its main goal is to provide a fully symbolic framework for quantum teleportation from a dynamical viewpoint, which makes explicit at each stage of the process how entanglement and information swap among the qubits involved in it. In order to construct this dynamical perspective, it has been necessary to define some auxiliary elements, namely virtual nodes and edges, as well as an additional notation for nodes describing potential states (against nodes accounting for actual states). With these elements, not only the flow of the process can be followed step by step, but they allow us to establish a direct correspondence between this graph-based approach and the usual state vector description. To show the suitability and versatility of this graph-based approach, several particular teleportation examples are examined, which include bipartite, tripartite and tetrapartite maximally entangled states as quantum channels. From the analysis of these cases, a general protocol is discussed in the case of sharing a maximally entangled multi-qubit system.

قيم البحث

اقرأ أيضاً

An arbitrary unknown quantum state cannot be precisely measured or perfectly replicated. However, quantum teleportation allows faithful transfer of unknown quantum states from one object to another over long distance, without physical travelling of t he object itself. Long-distance teleportation has been recognized as a fundamental element in protocols such as large-scale quantum networks and distributed quantum computation. However, the previous teleportation experiments between distant locations were limited to a distance on the order of 100 kilometers, due to photon loss in optical fibres or terrestrial free-space channels. An outstanding open challenge for a global-scale quantum internet is to significantly extend the range for teleportation. A promising solution to this problem is exploiting satellite platform and space-based link, which can conveniently connect two remote points on the Earth with greatly reduced channel loss because most of the photons propagation path is in empty space. Here, we report the first quantum teleportation of independent single-photon qubits from a ground observatory to a low Earth orbit satellite - through an up-link channel - with a distance up to 1400 km. To optimize the link efficiency and overcome the atmospheric turbulence in the up-link, a series of techniques are developed, including a compact ultra-bright source of multi-photon entanglement, narrow beam divergence, high-bandwidth and high-accuracy acquiring, pointing, and tracking (APT). We demonstrate successful quantum teleportation for six input states in mutually unbiased bases with an average fidelity of 0.80+/-0.01, well above the classical limit. This work establishes the first ground-to-satellite up-link for faithful and ultra-long-distance quantum teleportation, an essential step toward global-scale quantum internet.
We introduce a new dynamical picture, referred to as correlation picture, which connects a correlated state to its uncorrelated counterpart. Using this picture allows us to derive an exact dynamical equation for a general open-system dynamics with sy stem--environment correlations included. This exact dynamics is in the form of a Lindblad-like equation even in the presence of initial system-environment correlations. For explicit calculations, we also develop a weak-correlation expansion formalism that allows us to perform systematic perturbative approximations. This expansion provides approximate master equations which can feature advantages over existing weak-coupling techniques. As a special case, we derive a Markovian master equation, which is different from existing approaches. We compare our equations with corresponding standard weak-coupling equations by two examples, where our correlation picture formalism is more accurate, or at least as accurate as weak-coupling equations.
It is well known that certain measurement scenarios behave in a way which can not be explained by classical theories but by quantum theories. This behaviours are usually studied by Bell or non-contextuality (NC) inequalities. Knowing the maximal clas sical and quantum bounds of this inequalities is interesting, but tells us little about the quantum set Q of all quantum behaviours P. Despite having a constructive description of the quantum set associated to a given inequality, the freedom to choose quantum dimension, quantum states, and quantum measurements makes the shape of such convex bodies quite elusive. It is well known that a NC-inequality can be associated to a graph and the quantum set is a combinatorial object. Extra conditions, like Bell concept of parts, may restrict the behaviours achievable within quantum theory for a given scenario. For the simplest case, CHSH inequality, the NC and Be
Exploring the graph approach, we restate the extended definition of noncontextuality provided by the contextuality-by-default framework. This extended definition avoids the assumption of nondisturbance, which states that whenever two contexts overlap , the marginal distribution obtained for the intersection must be the same. We show how standard tools for characterizing contextuality can also be used in this extended framework for any set of measurements and, in addition, we also provide several conditions that can be tested directly in any contextuality experiment. Our conditions reduce to traditional ones for noncontextuality if the nondisturbance assumption is satisfied.
Most protocols for Quantum Information Processing consist of a series of quantum gates, which are applied sequentially. In contrast, interactions, for example between matter and fields, as well as measurements such as homodyne detection of light, are typically continuous in time. We show how the ability to perform quantum operations continuously and deterministically can be leveraged for inducing non-local dynamics between two separate parties. We introduce a scheme for the engineering of an interaction between two remote systems and present a protocol which induces a dynamics in one of the parties, which is controlled by the other one. Both schemes apply to continuous variable systems, run continuously in time and are based on real-time feedback.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا