ﻻ يوجد ملخص باللغة العربية
In this work, we investigate models for bulk, bi- and multilayers containing half-metallic ferromagnets (HMFs), at zero and at finite temperature, in order to elucidate the effects of strong electronic correlations on the spectral properties (density of states). Our focus is on the evolution of the finite-temperature many-body induced tails in the half-metallic gap. To this end, the dynamical mean-field theory (DMFT) is employed. For the bulk, a Bethe lattice model is solved using a matrix product states based impurity solver at zero temperature and a continuous-time quantum Monte Carlo (CT-QMC) solver at finite temperature. We demonstrate numerically, in agreement with the analytical result, that the tails vanish at the Fermi level at zero temperature. In order to study multilayers, taken to be square lattices within the layers, we use the real-space DMFT extension with the CT-QMC impurity solver. For bilayers formed by the HMF with a band or correlated insulator, we find that charge fluctuations between the layers enhance the finite temperature tails. In addition, in the presence of inter-layer hopping, a coherent quasiparticle peak forms in the otherwise correlated insulator. In the multilayer heterostructure setup, we find that by suitably choosing the model parameters, the tails at the HMF/Mott insulator interface can be reduced significantly, and that a high spin polarization is conceivable, even in the presence of long-ranged electrostatic interactions.
Anomalous magnetic and electronic properties of the half-metallic ferromagnets (HMF) have been discussed. The general conception of the HMF electronic structure which take into account the most important correlation effects from electron-magnon inter
Using the recently developed Nth-order muffin-tin-orbital (NMTO) based downfolding technique we revisit the electronic properties of half-metallic ferromagnets, the semi-Heusler NiMnSb and rutile CrO2. The NMTO Wannier orbitals for the Mn-d and Cr-t2
Including on-site electronic interactions described by the multi-orbital Hubbard model we study the correlation effects in the electronic structure of bulk palladium. We use a combined density functional and dynamical mean field theory, LDA+DMFT, bas
We present results for the electronic structure of alpha uranium using a recently developed quasiparticle self-consistent GW method (QSGW). This is the first time that the f-orbital electron-electron interactions in an actinide has been treated by a
Do electrons become ferromagnetic just because of their repulisve Coulomb interaction? Our calculations on the three-dimensional electron gas imply that itinerant ferromagnetim of delocalized electrons without lattice and band structure, the most bas