ترغب بنشر مسار تعليمي؟ اضغط هنا

Superposition principles for the Zakai equations and the Fokker-Planck equations on measure spaces

53   0   0.0 ( 0 )
 نشر من قبل Huijie Qiao
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English
 تأليف Huijie Qiao




اسأل ChatGPT حول البحث

The work concerns the superposition between the Zakai equations and the Fokker-Planck equations on measure spaces. First, we prove a superposition principle for the Fokker-Planck equations on $mR^mN$ under the integrable condition. And then by means of it, we show two superposition principles for the weak solutions of the Zakai equations from the nonlinear filtering problems and the weak solutions of the Fokker-Planck equations on measure spaces. As a by-product, we give some weak conditions under which the Fokker-Planck equations can be solved in the weak sense.



قيم البحث

اقرأ أيضاً

51 - Meiqi Liu , Huijie Qiao 2020
The work concerns the Zakai equations from nonlinear filtering problems of McKean-Vlasov stochastic differential equations with correlated noises. First, we establish the Kushner-Stratonovich equations, the Zakai equations and the distribution-depend ent Zakai equations. And then, the pathwise uniqueness, uniqueness in joint law and uniqueness in law of weak solutions for the distribution-dependent Zakai equations are shown. Finally, we prove a superposition principle between the distribution-dependent Zakai equations and distribution-dependent Fokker-Planck equations. As a by-product, we give some conditions under which distribution-dependent Fokker-Planck equations have unique weak solutions.
We prove a generalization of the known result of Trevisan on the Ambrosio-Figalli-Trevisan superposition principle for probability solutions to the Cauchy problem for the Fokker-Planck-Kolmogorov equation, according to which such a solution is genera ted by a solution to the corresponding martingale problem. The novelty is that in place of the integrability of the diffusion and drift coefficients $A$ and $b$ with respect to the solution we require the integrability of $(|A(t,x)|+|langle b(t,x),xrangle |)/(1+|x|^2)$. Therefore, in the case where there are no a priori global integrability conditions the function $|A(t,x)|+|langle b(t,x),xrangle |$ can be of quadratic growth. Moreover, as a corollary we obtain that under mild conditions on the initial distribution it is sufficient to have the one-sided bound $langle b(t,x),xrangle le C+C|x|^2 log |x|$ along with $|A(t,x)|le C+C|x|^2 log |x|$.
We study Markov processes associated with stochastic differential equations, whose non-linearities are gradients of convex functionals. We prove a general result of existence of such Markov processes and a priori estimates on the transition probabili ties. The main result is the following stability property: if the associated invariant measures converge weakly, then the Markov processes converge in law. The proofs are based on the interpretation of a Fokker-Planck equation as the steepest descent flow of the relative Entropy functional in the space of probability measures, endowed with the Wasserstein distance. Applications include stochastic partial differential equations and convergence of equilibrium fluctuations for a class of random interfaces.
We prove two new results connected with elliptic Fokker-Planck-Kolmogorov equations with drifts integrable with respect to solutions. The first result answers negatively a long-standing question and shows that a density of a probability measure satis fying the Fokker-Planck-Kolmogorov equation with a drift integrable with respect to this density can fail to belong to the Sobolev class~$W^{1,1}(mathbb{R}^d)$. There is also a version of this result for densities with respect to Gaussian measures. The second new result gives some positive information about properties of such solutions: the solution density is proved to belong to certain fractional Sobolev classes.
138 - Xicheng Zhang 2021
In this paper we study second order stochastic differential equations with measurable and density-distribution dependent coefficients. Through establishing a maximum principle for kinetic Fokker-Planck-Kolmogorov equations with distribution-valued in homogeneous term, we show the existence of weak solutions under mild assumptions. Moreover, by using the Holder regularity estimate obtained recently in cite{GIMV19}, we also show the well-posedness of generalized martingale problems when diffusion coefficients only depend on the position variable (not necessarily continuous). Even in the non density-distribution dependent case, it seems that this is the first result about the well-posedness of SDEs with measurable diffusion coefficients.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا