ترغب بنشر مسار تعليمي؟ اضغط هنا

Robust Prediction of Punctuation and Truecasing for Medical ASR

151   0   0.0 ( 0 )
 نشر من قبل Monica Sunkara
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Automatic speech recognition (ASR) systems in the medical domain that focus on transcribing clinical dictations and doctor-patient conversations often pose many challenges due to the complexity of the domain. ASR output typically undergoes automatic punctuation to enable users to speak naturally, without having to vocalise awkward and explicit punctuation commands, such as period, add comma or exclamation point, while truecasing enhances user readability and improves the performance of downstream NLP tasks. This paper proposes a conditional joint modeling framework for prediction of punctuation and truecasing using pretrained masked language models such as BERT, BioBERT and RoBERTa. We also present techniques for domain and task specific adaptation by fine-tuning masked language models with medical domain data. Finally, we improve the robustness of the model against common errors made in ASR by performing data augmentation. Experiments performed on dictation and conversational style corpora show that our proposed model achieves ~5% absolute improvement on ground truth text and ~10% improvement on ASR outputs over baseline models under F1 metric.

قيم البحث

اقرأ أيضاً

Capitalization and punctuation are important cues for comprehending written texts and conversational transcripts. Yet, many ASR systems do not produce punctuated and case-formatted speech transcripts. We propose to use a multi-task system that can ex ploit the relations between casing and punctuation to improve their prediction performance. Whereas text data for predicting punctuation and truecasing is seemingly abundant, we argue that written text resources are inadequate as training data for conversational models. We quantify the mismatch between written and conversational text domains by comparing the joint distributions of punctuation and word cases, and by testing our model cross-domain. Further, we show that by training the model in the written text domain and then transfer learning to conversations, we can achieve reasonable performance with less data.
Language understanding in speech-based systems have attracted much attention in recent years with the growing demand for voice interface applications. However, the robustness of natural language understanding (NLU) systems to errors introduced by aut omatic speech recognition (ASR) is under-examined. %To facilitate the research on ASR-robust general language understanding, In this paper, we propose ASR-GLUE benchmark, a new collection of 6 different NLU tasks for evaluating the performance of models under ASR error across 3 different levels of background noise and 6 speakers with various voice characteristics. Based on the proposed benchmark, we systematically investigate the effect of ASR error on NLU tasks in terms of noise intensity, error type and speaker variants. We further purpose two ways, correction-based method and data augmentation-based method to improve robustness of the NLU systems. Extensive experimental results and analysises show that the proposed methods are effective to some extent, but still far from human performance, demonstrating that NLU under ASR error is still very challenging and requires further research.
Developing a practical speech recognizer for a low resource language is challenging, not only because of the (potentially unknown) properties of the language, but also because test data may not be from the same domain as the available training data. In this paper, we focus on the latter challenge, i.e. domain mismatch, for systems trained using a sequence-based criterion. We demonstrate the effectiveness of using a pre-trained English recognizer, which is robust to such mismatched conditions, as a domain normalizing feature extractor on a low resource language. In our example, we use Turkish Conversational Speech and Broadcast News data. This enables rapid development of speech recognizers for new languages which can easily adapt to any domain. Testing in various cross-domain scenarios, we achieve relative improvements of around 25% in phoneme error rate, with improvements being around 50% for some domains.
In the FAME! Project, a code-switching (CS) automatic speech recognition (ASR) system for Frisian-Dutch speech is developed that can accurately transcribe the local broadcasters bilingual archives with CS speech. This archive contains recordings with monolingual Frisian and Dutch speech segments as well as Frisian-Dutch CS speech, hence the recognition performance on monolingual segments is also vital for accurate transcriptions. In this work, we propose a multi-graph decoding and rescoring strategy using bilingual and monolingual graphs together with a unified acoustic model for CS ASR. The proposed decoding scheme gives the freedom to design and employ alternative search spaces for each (monolingual or bilingual) recognition task and enables the effective use of monolingual resources of the high-resourced mixed language in low-resourced CS scenarios. In our scenario, Dutch is the high-resourced and Frisian is the low-resourced language. We therefore use additional monolingual Dutch text resources to improve the Dutch language model (LM) and compare the performance of single- and multi-graph CS ASR systems on Dutch segments using larger Dutch LMs. The ASR results show that the proposed approach outperforms baseline single-graph CS ASR systems, providing better performance on the monolingual Dutch segments without any accuracy loss on monolingual Frisian and code-mixed segments.
In this paper, we present Hitachi and Paderborn Universitys joint effort for automatic speech recognition (ASR) in a dinner party scenario. The main challenges of ASR systems for dinner party recordings obtained by multiple microphone arrays are (1) heavy speech overlaps, (2) severe noise and reverberation, (3) very natural conversational content, and possibly (4) insufficient training data. As an example of a dinner party scenario, we have chosen the data presented during the CHiME-5 speech recognition challenge, where the baseline ASR had a 73.3% word error rate (WER), and even the best performing system at the CHiME-5 challenge had a 46.1% WER. We extensively investigated a combination of the guided source separation-based speech enhancement technique and an already proposed strong ASR backend and found that a tight combination of these techniques provided substantial accuracy improvements. Our final system achieved WERs of 39.94% and 41.64% for the development and evaluation data, respectively, both of which are the best published results for the dataset. We also investigated with additional training data on the official small data in the CHiME-5 corpus to assess the intrinsic difficulty of this ASR task.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا