ﻻ يوجد ملخص باللغة العربية
10 Hibonite-pyroxene/glass spherules discovered hitherto are a rare suite of refractory inclusions that show the largest range of exotic isotopic properties (anomalies in neutron rich isotopes (e.g., $^{48}$Ca, $^{50}$Ti), abundance of $^{26}$Al) despite their defining simple spherical morphology and mineralogy consisting predominantly of few hibonites nestled within/with glassy or crystallised calcium, aluminium-rich pyroxene. $^{26}$Al-$^{26}$Mg chronological studies along with petrography and mineralogy of a relatively large (~120 micron diameter), found in Allan Hills 77307 (CO3.03) has been performed. Uniquely, both hibonite and pyroxene show discordant abundance of short-lived now-extinct radionuclide $^{26}$Al that suggest disparate and distinct regions of origin of hibonite and pyroxene. The pristine petrography and mineralogy of this inclusion allow discernment of their genesis and trend of alteration in hibonite-pyroxene/glass spherules.
Hibonite-pyroxene spherules are an extremely rare kind of refractory inclusion that show a wide range of exotic isotopic properties despite their defining similarity and simplicity in morphology and mineralogy. One such, relatively large (about 120 m
In contrast to the water-poor inner solar system planets, stochasticity during planetary formation and order of magnitude deviations in exoplanet volatile contents suggest that rocky worlds engulfed in thick volatile ice layers are the dominant famil
Recent work suggests that $^{26}$Al may determine the water budget in terrestrial exoplanets as its radioactive decay dehydrates planetesimals leading to rockier compositions. Here I consider the observed distribution of $^{26}$Al in the Galaxy and t
The rate of the $^{25}$Al($p$,$gamma$)$^{26}$Si reaction is one of the few key remaining nuclear uncertainties required for predicting the production of the cosmic $gamma$-ray emitter $^{26}$Al in explosive burning in novae. This reaction rate is dom
Proton captures on Mg isotopes play an important role in the Mg-Al cycle active in stellar H-burning regions. In particular, low-energy nuclear resonances in the $^{25}$Mg(p,$gamma$)$^{26}$Al reaction affect the production of radioactive $^{26}$Al$^{