ﻻ يوجد ملخص باللغة العربية
We present a new method, called $x$-cut cosmic shear, which optimally removes sensitivity to poorly modeled scales from the two-point cosmic shear signal. We show that the $x$-cut cosmic shear covariance matrix can be computed from the correlation function covariance matrix in a few minutes, enabling a likelihood analysis at virtually no additional computational cost. Further we show how to generalize $x$-cut cosmic shear to galaxy-galaxy lensing. Performing an $x$-cut cosmic shear analysis of the Dark Energy Survey Year 1 (DESY1) shear data, we reduce the error on $S_8= sigma_8 (Omega_m / 0.3) ^ {0.5}$ by $32 %$ relative to a correlation function analysis with the same priors and angular scale cut criterion, while showing our constraints are robust to different baryonic feedback models. Largely driven by information at small angular scales, our result, $S_8= 0.734 pm 0.026$, yields a $2.6 sigma$ tension with the Planck Legacy analysis of the cosmic microwave background. As well as alleviating baryonic modelling uncertainties, our method can be used to optimally constrain a large number of theories of modified gravity where computational limitations make it infeasible to model the power spectrum down to extremely small scales. The key parts of our code are made publicly available.
This work, together with its companion paper, Secco and Samuroff et al. (2021), presents the Dark Energy Survey Year 3 cosmic shear measurements and cosmological constraints based on an analysis of over 100 million source galaxies. With the data span
We use 26 million galaxies from the Dark Energy Survey (DES) Year 1 shape catalogs over 1321 deg$^2$ of the sky to produce the most significant measurement of cosmic shear in a galaxy survey to date. We constrain cosmological parameters in both the f
This work and its companion paper, Amon et al. (2021), present cosmic shear measurements and cosmological constraints from over 100 million source galaxies in the Dark Energy Survey (DES) Year 3 data. We constrain the lensing amplitude parameter $S_8
If left unchecked modeling uncertainties at small scales, due to poorly understood baryonic physics and non-linear structure formation, will significantly bias Stage IV cosmic shear two-point statistic parameter constraints. While it is perhaps possi
Measurements of large-scale structure are interpreted using theoretical predictions for the matter distribution, including potential impacts of baryonic physics. We constrain the feedback strength of baryons jointly with cosmology using weak lensing