ترغب بنشر مسار تعليمي؟ اضغط هنا

x-cut Cosmic Shear: Optimally Removing Sensitivity to Baryonic and Nonlinear Physics with an Application to the Dark Energy Survey Year 1 Shear Data

79   0   0.0 ( 0 )
 نشر من قبل Peter Taylor
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Peter L. Taylor




اسأل ChatGPT حول البحث

We present a new method, called $x$-cut cosmic shear, which optimally removes sensitivity to poorly modeled scales from the two-point cosmic shear signal. We show that the $x$-cut cosmic shear covariance matrix can be computed from the correlation function covariance matrix in a few minutes, enabling a likelihood analysis at virtually no additional computational cost. Further we show how to generalize $x$-cut cosmic shear to galaxy-galaxy lensing. Performing an $x$-cut cosmic shear analysis of the Dark Energy Survey Year 1 (DESY1) shear data, we reduce the error on $S_8= sigma_8 (Omega_m / 0.3) ^ {0.5}$ by $32 %$ relative to a correlation function analysis with the same priors and angular scale cut criterion, while showing our constraints are robust to different baryonic feedback models. Largely driven by information at small angular scales, our result, $S_8= 0.734 pm 0.026$, yields a $2.6 sigma$ tension with the Planck Legacy analysis of the cosmic microwave background. As well as alleviating baryonic modelling uncertainties, our method can be used to optimally constrain a large number of theories of modified gravity where computational limitations make it infeasible to model the power spectrum down to extremely small scales. The key parts of our code are made publicly available.



قيم البحث

اقرأ أيضاً

84 - A. Amon , D. Gruen , M. A. Troxel 2021
This work, together with its companion paper, Secco and Samuroff et al. (2021), presents the Dark Energy Survey Year 3 cosmic shear measurements and cosmological constraints based on an analysis of over 100 million source galaxies. With the data span ning 4143 deg$^2$ on the sky, divided into four redshift bins, we produce the highest significance measurement of cosmic shear to date, with a signal-to-noise of 40. We conduct a blind analysis in the context of the $Lambda$CDM model and find a 3% constraint of the clustering amplitude, $S_8equiv sigma_8 (Omega_{rm m}/0.3)^{0.5} = 0.759^{+0.025}_{-0.023}$. A $Lambda$CDM-Optimized analysis, which safely includes smaller scale information, yields a 2% precision measurement of $S_8= 0.772^{+0.018}_{-0.017}$ that is consistent with the fiducial case. The two low-redshift measurements are statistically consistent with the Planck Cosmic Microwave Background result, however, both recovered $S_8$ values are lower than the high-redshift prediction by $2.3sigma$ and $2.1sigma$ ($p$-values of 0.02 and 0.05), respectively. The measurements are shown to be internally consistent across redshift bins, angular scales and correlation functions. The analysis is demonstrated to be robust to calibration systematics, with the $S_8$ posterior consistent when varying the choice of redshift calibration sample, the modeling of redshift uncertainty and methodology. Similarly, we find that the corrections included to account for the blending of galaxies shifts our best-fit $S_8$ by $0.5sigma$ without incurring a substantial increase in uncertainty. We examine the limiting factors for the precision of the cosmological constraints and find observational systematics to be subdominant to the modeling of astrophysics. Specifically, we identify the uncertainties in modeling baryonic effects and intrinsic alignments as the limiting systematics.
We use 26 million galaxies from the Dark Energy Survey (DES) Year 1 shape catalogs over 1321 deg$^2$ of the sky to produce the most significant measurement of cosmic shear in a galaxy survey to date. We constrain cosmological parameters in both the f lat $Lambda$CDM and $w$CDM models, while also varying the neutrino mass density. These results are shown to be robust using two independent shape catalogs, two independent photoz calibration methods, and two independent analysis pipelines in a blind analysis. We find a 3.5% fractional uncertainty on $sigma_8(Omega_m/0.3)^{0.5} = 0.782^{+0.027}_{-0.027}$ at 68% CL, which is a factor of 2.5 improvement over the fractional constraining power of our DES Science Verification results. In $w$CDM, we find a 4.8% fractional uncertainty on $sigma_8(Omega_m/0.3)^{0.5} = 0.777^{+0.036}_{-0.038}$ and a dark energy equation-of-state $w=-0.95^{+0.33}_{-0.39}$. We find results that are consistent with previous cosmic shear constraints in $sigma_8$ -- $Omega_m$, and see no evidence for disagreement of our weak lensing data with data from the CMB. Finally, we find no evidence preferring a $w$CDM model allowing $w e -1$. We expect further significant improvements with subsequent years of DES data, which will more than triple the sky coverage of our shape catalogs and double the effective integrated exposure time per galaxy.
This work and its companion paper, Amon et al. (2021), present cosmic shear measurements and cosmological constraints from over 100 million source galaxies in the Dark Energy Survey (DES) Year 3 data. We constrain the lensing amplitude parameter $S_8 equivsigma_8sqrt{Omega_textrm{m}/0.3}$ at the 3% level in $Lambda$CDM: $S_8=0.759^{+0.025}_{-0.023}$ (68% CL). Our constraint is at the 2% level when using angular scale cuts that are optimized for the $Lambda$CDM analysis: $S_8=0.772^{+0.018}_{-0.017}$ (68% CL). With cosmic shear alone, we find no statistically significant constraint on the dark energy equation-of-state parameter at our present statistical power. We carry out our analysis blind, and compare our measurement with constraints from two other contemporary weak-lensing experiments: the Kilo-Degree Survey (KiDS) and Hyper-Suprime Camera Subaru Strategic Program (HSC). We additionally quantify the agreement between our data and external constraints from the Cosmic Microwave Background (CMB). Our DES Y3 result under the assumption of $Lambda$CDM is found to be in statistical agreement with Planck 2018, although favors a lower $S_8$ than the CMB-inferred value by $2.3sigma$ (a $p$-value of 0.02). This paper explores the robustness of these cosmic shear results to modeling of intrinsic alignments, the matter power spectrum and baryonic physics. We additionally explore the statistical preference of our data for intrinsic alignment models of different complexity. The fiducial cosmic shear model is tested using synthetic data, and we report no biases greater than 0.3$sigma$ in the plane of $S_8timesOmega_textrm{m}$ caused by uncertainties in the theoretical models.
102 - Peter L. Taylor 2018
If left unchecked modeling uncertainties at small scales, due to poorly understood baryonic physics and non-linear structure formation, will significantly bias Stage IV cosmic shear two-point statistic parameter constraints. While it is perhaps possi ble to run N-body or hydrodynamical simulations to determine the impact of these effects this approach is computationally expensive; especially to test a large number of theories of gravity. Instead we propose directly removing sensitivity to small-scale structure from the lensing spectrum, creating a statistic that is robust to these uncertainties. We do this by taking a redshift-dependent l-cut after applying the Bernardeau-Nishimichi-Taruya (BNT) nulling scheme. This reorganizes the information in the lensing spectrum to make the relationship between the angular scale, l, and the structure scale, k, much clearer compared to standard cosmic shear power spectra -- for which no direct relationship exists. We quantify the effectiveness of this method at removing sensitivity to small scales and compute the predicted Fisher error on the dark energy equation of state, w0, for different k-cuts in the matter power spectrum.
Measurements of large-scale structure are interpreted using theoretical predictions for the matter distribution, including potential impacts of baryonic physics. We constrain the feedback strength of baryons jointly with cosmology using weak lensing and galaxy clustering observables (3$times$2pt) of Dark Energy Survey (DES) Year 1 data in combination with external information from baryon acoustic oscillations (BAO) and Planck cosmic microwave background polarization. Our baryon modeling is informed by a set of hydrodynamical simulations that span a variety of baryon scenarios; we span this space via a Principal Component (PC) analysis of the summary statistics extracted from these simulations. We show that at the level of DES Y1 constraining power, one PC is sufficient to describe the variation of baryonic effects in the observables, and the first PC amplitude ($Q_1$) generally reflects the strength of baryon feedback. With the upper limit of $Q_1$ prior being bound by the Illustris feedback scenarios, we reach $sim 20%$ improvement in the constraint of $S_8=sigma_8(Omega_{rm m}/0.3)^{0.5}=0.788^{+0.018}_{-0.021}$ compared to the original DES 3$times$2pt analysis. This gain is driven by the inclusion of small-scale cosmic shear information down to 2.5 arcmin, which was excluded in previous DES analyses that did not model baryonic physics. We obtain $S_8=0.781^{+0.014}_{-0.015}$ for the combined DES Y1+Planck EE+BAO analysis with a non-informative $Q_1$ prior. In terms of the baryon constraints, we measure $Q_1=1.14^{+2.20}_{-2.80}$ for DES Y1 only and $Q_1=1.42^{+1.63}_{-1.48}$ for DESY1+Planck EE+BAO, allowing us to exclude one of the most extreme AGN feedback hydrodynamical scenario at more than $2 sigma$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا