ترغب بنشر مسار تعليمي؟ اضغط هنا

Skew Scattering and Side Jump Drive Exciton Valley Hall Effect in Two-Dimensional Crystals

326   0   0.0 ( 0 )
 نشر من قبل M. M. Glazov
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Exciton Valley Hall effect is the spatial separation of the valley-tagged excitons in the presence of a drag force. Usually, the effect is associated with the anomalous velocity acquired by the particles due to the Berry curvature of the Bloch bands. Here we show that the anomalous velocity plays no role in the exciton valley Hall effect, which is governed by the side-jump and skew scattering mechanisms. We develop microscopic theory of the exciton valley Hall effect in the presence of synthetic electric field and phonon drag and calculate all relevant contributions to the valley Hall current also demonstrating the cancellation of the anomalous velocity. The sensitivity of the effect to the origin of the drag force and to the scattering processes is shown. We extend the drift-diffusion model to account for the valley Hall effect and calculate the exciton density and valley polarization profiles.



قيم البحث

اقرأ أيضاً

280 - M. A. Cazalilla , H. Ochoa , 2013
We propose to engineer time-reversal-invariant topological insulators in two-dimensional (2D) crystals of transition metal dichalcogenides (TMDCs). We note that, at low doping, semiconducting TMDCs under shear strain will develop spin-polarized Landa u levels residing in different valleys. We argue that gaps between Landau levels in the range of $10-100$ Kelvin are within experimental reach. In addition, we point out that a superlattice arising from a Moire pattern can lead to topologically non-trivial subbands. As a result, the edge transport becomes quantized, which can be probed in multi-terminal devices made using strained 2D crystals and/or heterostructures. The strong $d$ character of valence and conduction bands may also allow for the investigation of the effects of electron correlations on the topological phases.
The newly discovered valley degree of freedom (DOF) in atomically thin two-dimensional (2D) transition metal dichalcogenides (TMDs) offers a promising platform to explore rich nonlinear physics, such as spinor Bose-Einstein condensate (BEC) and novel valleytronics applications. However, the critical nonlinear effect, such as valley polariton bosonic stimulation (BS), has long remained an unresolved challenge due to the generation of limited polariton ground state densities necessary to induce the stimulated scattering of polaritons in specific valleys. Here, we report, for the first time, the valley bosonic stimulation of exciton-polaritons via spin-valley locking in a WS2 monolayer microcavity. This is achieved by the resonant injection of valley polaritons at specific energy and wavevector, which allows spin-polarized polaritons to efficiently populate their ground state and induce a valley-dependent bosonic stimulation. As a result, we observe the nonlinear self-amplification of polariton emission from the valley-dependent ground state. Our finding paves the way for both fundamental study of valley polariton BEC physics and non-linear optoelectronic devices such as spin-dependent parametric oscillators and spin-lasers.
We study the Hall conductivity of a two-dimensional electron gas under an inhomogeneous magnetic field $B(x)$. First, we prove using the quantum kinetic theory that an odd magnetic field can lead to a purely nonlinear Hall response. Second, consideri ng a real-space magnetic dipole consisting of a sign-changing magnetic field and based on numerical semiclassical dynamics, we unveil a parametric resonance involving the cyclotron ratio and a characteristic width of $B(x)$, which can greatly enhance the Hall response. Different from previous mechanisms that rely on the bulk Berry curvature dipole, here, the effect largely stems from boundary states associated with the real-space magnetic dipole. Our findings pave a new way to engineer current rectification and higher harmonic generation in two-dimensional materials having or not crystal inversion symmetry.
174 - Jin Lan , Jiang Xiao 2020
Spin wave and magnetic texture are two elementary excitations in magnetic systems, and their interaction leads to rich magnetic phenomena. By describing the spin wave and the magnetic texture using their own collective coordinates, we find that they interact as classical particles traveling in mutual electromagnetic fields. Based on this unified collective coordinate model, we find that both skew scattering and side jump may occur as spin wave passing through magnetic textures. The skew scattering is associated with the magnetic topology of the texture, while the side jump is correlated to the total magnetization of the texture. We illustrate the concepts of skew scattering and side jump by investigating the spin wave trajectories across the topological magnetic Skyrmion and the topologically trivial magnetic bubble respectively.
The side-jump effect is a manifestation of the spin orbit interaction in electron scattering from an atom/ion/impurity. The effect has a broad interest because of its conceptual importance for generic spin-orbital physics, in particular the effect is widely discussed in spintronics. We reexamine the effect accounting for the exact nonperturbative electron wave function inside the atomic core. We find that value of the effect is much smaller than estimates accepted in literature. The reduction factor is 1/Z^2, where Z is the nucleus charge of the atom/impurity. This implies that the side-jump effect is practically irrelevant for spintronics, the skew scattering and/or the intrinsic mechanism always dominate the anomalous Hall and spin Hall effects.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا