ترغب بنشر مسار تعليمي؟ اضغط هنا

The First Three Seconds: a Review of Possible Expansion Histories of the Early Universe

130   0   0.0 ( 0 )
 نشر من قبل Tommi Tenkanen
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

It is commonly assumed that the energy density of the Universe was dominated by radiation between reheating after inflation and the onset of matter domination 54,000 years later. While the abundance of light elements indicates that the Universe was radiation dominated during Big Bang Nucleosynthesis (BBN), there is scant evidence that the Universe was radiation dominated prior to BBN. It is therefore possible that the cosmological history was more complicated, with deviations from the standard radiation domination during the earliest epochs. Indeed, several interesting proposals regarding various topics such as the generation of dark matter, matter-antimatter asymmetry, gravitational waves, primordial black holes, or microhalos during a nonstandard expansion phase have been recently made. In this paper, we review various possible causes and consequences of deviations from radiation domination in the early Universe - taking place either before or after BBN - and the constraints on them, as they have been discussed in the literature during the recent years.

قيم البحث

اقرأ أيضاً

Spectral distortions of the cosmic microwave background (CMB) provide a unique tool for learning about the early phases of cosmic history, reaching deep into the primordial Universe. At redshifts $z<10^6$, thermalization processes become inefficient and existing limits from COBE/FIRAS imply that no more than $Delta rho/rho<6times 10^{-5}$ (95% c.l.) of energy could have been injected into the CMB. However, at higher redshifts, when thermalization is efficient, the constraint weakens and $Delta rho/rho simeq 0.01-0.1$ could in principle have occurred. Existing computations for the evolution of distortions commonly assume $Delta rho/rho ll 1$ and thus become inaccurate in this case. Similarly, relativistic temperature corrections become relevant for large energy release, but have previously not been modeled as carefully. Here we study the evolution of distortions and the thermalization process after single large energy release at $z>10^5$. We show that for large distortions the thermalization efficiency is significantly reduced and that the distortion visibility is sizeable to much earlier times. This tightens spectral distortions constraints on low-mass primordial black holes with masses $M_{rm PBH} < 6times 10^{11}$ g. Similarly, distortion limits on the amplitude of the small-scale curvature power spectrum at wavenumbers $k>10^4,{rm Mpc}^{-1}$ and short-lived decaying particles with lifetimes $t_X< 10^7$ s are tightened, however, these still require a more detailed time-dependent treatment. We also briefly discuss the constraints from measurements of the effective number of relativistic degrees of freedom and light element abundances and how these complement spectral distortion limits.
The standard cosmological model successfully describes many observations from widely different epochs of the Universe, from primordial nucleosynthesis to the accelerating expansion of the present day. However, as the basic cosmological parameters of the model are being determined with increasing and unprecedented precision, it is not guaranteed that the same model will fit more precise observations from widely different cosmic epochs. Discrepancies developing between observations at early and late cosmological time may require an expansion of the standard model, and may lead to the discovery of new physics. The workshop Tensions between the Early and the Late Universe was held at the Kavli Institute for Theoretical Physics on July 15-17 2019 (More details of the workshop (including on-line presentations) are given at the website: https://www.kitp.ucsb.edu/activities/enervac-c19) to evaluate increasing evidence for these discrepancies, primarily in the value of the Hubble constant as well as ideas recently proposed to explain this tension. Multiple new observational results for the Hubble constant were presented in the time frame of the workshop using different probes: Cepheids, strong lensing time delays, tip of the red giant branch (TRGB), megamasers, Oxygen-rich Miras and surface brightness fluctuations (SBF) resulting in a set of six new ones in the last several months. Here we present the summary plot of the meeting that shows combining any three independent approaches to measure H$_0$ in the late universe yields tension with the early Universe values between 4.0$sigma$ and 5.8$sigma$. This shows that the discrepancy does not appear to be dependent on the use of any one method, team, or source. Theoretical ideas to explain the discrepancy focused on new physics in the decade of expansion preceding recombination as the most plausible. This is a brief summary of the workshop.
In this work we analyse in detail the possibility of using small and intermediate-scale gravitational wave anisotropies to constrain the inflationary particle content. First, we develop a phenomenological approach focusing on anisotropies generated b y primordial tensor-tensor-scalar and purely gravitational non-Gaussianities. We highlight the quantities that play a key role in determining the detectability of the signal. To amplify the power of anisotropies as a probe of early universe physics, we consider cross-correlations with CMB temperature anisotropies. We assess the size of the signal from inflationary interactions against so-called induced anisotropies. In order to arrive at realistic estimates, we obtain the projected constraints on the non-linear primordial parameter $F_{rm NL}$ for several upcoming gravitational wave probes in the presence of the astrophysical gravitational wave background. We further illustrate our findings by considering a concrete inflationary realisation and use it to underscore a few subtleties in the phenomenological analysis.
We have shown (Colin et al., 2019) that the acceleration of the Hubble expansion rate inferred from Type Ia supernovae (SNe Ia) is, at $3.9sigma$ significance, a dipole approximately aligned with the CMB dipole, while its monopole component, which ca n be interpreted as due to a Cosmological Constant or dark energy, is consistent with zero at $1.4sigma$. This has been challenged by Rubin & Heitlauf (2019) who assert that the dipole arises because we made an incorrect assumption about the SNe Ia light-curve parameters (viz. took them to be sample- and redshift independent), and did not allow for the motion of the Solar system (w.r.t. the CMB frame in which the CMB dipole supposedly vanishes). In fact what has an even larger impact on our finding is that we reversed the inconsistent corrections made for the peculiar velocities of the SNe Ia host galaxies w.r.t the CMB frame, which in fact serve to bias the lever arm of the Hubble diagram towards higher inferred values of the monopole. We demonstrate that even if all such corrections are made consistently and both sample- and redshift-dependence is allowed for in the standardisation of supernova light curves, the evidence for isotropic acceleration rises to just $2.8,sigma$. Thus the criticism of Rubin & Heitlauf serves only to highlight that corrections must be made to the SNe Ia data assuming the standard $Lambda$CDM model, in order to recover it from the data.
In this paper, we study analytically the process of external generation and subsequent free evolution of the lepton chiral asymmetry and helical magnetic fields in the early hot universe. This process is known to be affected by the Abelian anomaly of the electroweak gauge interactions. As a consequence, chiral asymmetry in the fermion distribution generates magnetic fields of non-zero helicity, and vice versa. We take into account the presence of thermal bath, which serves as a seed for the development of instability in magnetic field in the presence of externally generated lepton chiral asymmetry. The developed helical magnetic field and lepton chiral asymmetry support each other, considerably prolonging their mutual existence, in the process of `inverse cascade transferring magnetic-field power from small to large spatial scales. For cosmologically interesting initial conditions, the chiral asymmetry and the energy density of helical magnetic field are shown to evolve by scaling laws, effectively depending on a single combined variable. In this case, the late-time asymptotics of the conformal chiral chemical potential reproduces the universal scaling law previously found in the literature for the system under consideration. This regime is terminated at lower temperatures because of scattering of electrons with chirality change, which exponentially washes out chiral asymmetry. We derive an expression for the termination temperature as a function of the chiral asymmetry and energy density of helical magnetic field.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا