ترغب بنشر مسار تعليمي؟ اضغط هنا

LEKID sensitivity for space applications between 80 and 600 GHz

132   0   0.0 ( 0 )
 نشر من قبل Andrea Catalano
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report the design, fabrication and testing of Lumped Element Kinetic Inductance Detectors (LEKID) showing performance in line with the requirements of the next generation space telescopes operating in the spectral range from 80 to 600 GHz. This range is of particular interest for Cosmic Microwave Background (CMB) studies. For this purpose we have designed and fabricated 100-pixel arrays covering five distinct bands. These wafers have been measured via multiplexing, where a full array is read out using a single pair of lines. We adopted a custom cold black-body installed in front of the detectors and regulated at temperatures between 1 K and 20 K. We will describe in the present paper the main design considerations, the fabrication processes, the testing and the data analysis.

قيم البحث

اقرأ أيضاً

We have developed Lumped Element Kinetic Inductance Detectors (LEKID) sensitive in the frequency band from 80 to 120~GHz. In this work, we take advantage of the so-called proximity effect to reduce the superconducting gap of Aluminium, otherwise stro ngly suppressing the LEKID response for frequencies smaller than 100~GHz. We have designed, produced and optically tested various fully multiplexed arrays based on multi-layers combinations of Aluminium (Al) and Titanium (Ti). Their sensitivities have been measured using a dedicated closed-circle 100 mK dilution cryostat and a sky simulator allowing to reproduce realistic observation conditions. The spectral response has been characterised with a Martin-Puplett interferometer up to THz frequencies, and with a resolution of 3~GHz. We demonstrate that Ti-Al LEKID can reach an optical sensitivity of about $1.4$ $10^{-17}$~$W/Hz^{0.5}$ (best pixel), or $2.2$ $10^{-17}$~$W/Hz^{0.5}$ when averaged over the whole array. The optical background was set to roughly 0.4~pW per pixel, typical for future space observatories in this particular band. The performance is close to a sensitivity of twice the CMB photon noise limit at 100~GHz which drove the design of the Planck HFI instrument. This figure remains the baseline for the next generation of millimetre-wave space satellites.
The BICEP/Keck (BK) experiment aims to detect the imprint of primordial gravitational waves in the Cosmic Microwave Background polarization, which would be direct evidence of the inflation theory. While the tensor-to-scalar ratio has been constrained to be r_0.05 < 0.06 at 95% c.l., further improvements on this upper limit are hindered by polarized Galactic foreground emissions and removal of gravitational lensing polarization. The 30/40 GHz receiver of the BICEP Array (BA) will deploy at the end of 2019 and will constrain the synchrotron foreground with unprecedented accuracy within the BK sky patch. We will show the design of the 30/40 GHz detectors and test results summarizing its performance. The low optical and atmospheric loading at these frequencies requires our TES detectors to have low saturation power in order to be photon-noise dominated. To realize the low thermal conductivity required from a 250 mK base temperature, we developed new bolometer leg designs. We will present the relevant measured detector parameters: G, Tc, Rn, Psat , and spectral bands, and noise spectra. We achieved a per bolometer NEP including all noise components of 2.07E-17 W/sqrt(Hz), including an anticipated photon noise level 1.54E-17 W/sqrt(Hz).
52 - J. Goupy , A. Adane , A. Benoit 2016
The Lumped Element Kinetic Inductance Detectors (LEKID)demonstrated full maturity in the NIKA (New IRAM KID Arrays)instrument. These results allow directly comparing LEKID performance with other competing technologies (TES, doped silicon) in the mm a nd sub-mm range. A continuing effort is ongoing to improve the microfabrication technologies and concepts in order to satisfy the requirements of new instruments. More precisely, future satellites dedicated to CMB (Cosmic Microwave Background) studies will require the same focal plane technology to cover, at least, the frequency range of 60 to 600 GHz. Aluminium LEKID developed for NIKA have so far demonstrated, under real telescope conditions, performance approaching photon-noise limitation in the band 120-300 GHz. By implementing superconducting bi-layers we recently demonstrated LEKID arrays working in the range 80-120 GHz and with sensitivities approaching the goals for CMB missions. NIKA itself (350 pixels) is followed by a more ambitious project requiring several thousands (3000-5000) pixels. NIKA2 has been installed in October 2015 at the IRAM 30-m telescope. We will describe in detail the technological improvements that allowed a relatively harmless 10-fold up-scaling in pixels count without degrading the initial sensitivity. In particular we will briefly describe a solution to simplify the difficult fabrication step linked to the slot-line propagation mode in coplanar waveguide.
We present radio observations of the Moon between $35$ and $80$ MHz to demonstrate a novel technique of interferometrically measuring large-scale diffuse emission extending far beyond the primary beam (global signal) for the first time. In particular , we show that (i) the Moon appears as a negative-flux source at frequencies $35< u<80$ MHz since it is `colder than the diffuse Galactic background it occults, (ii) using the (negative) flux of the lunar disc, we can reconstruct the spectrum of the diffuse Galactic emission with the lunar thermal emission as a reference, and (iii) that reflected RFI (radio-frequency interference) is concentrated at the center of the lunar disc due to specular nature of reflection, and can be independently measured. Our RFI measurements show that (i) Moon-based Cosmic Dawn experiments must design for an Earth-isolation of better than $80$ dB to achieve an RFI temperature $<1$ mK, (ii) Moon-reflected RFI contributes to a dipole temperature less than $20$ mK for Earth-based Cosmic Dawn experiments, (iii) man-made satellite-reflected RFI temperature exceeds $20$ mK if the aggregate cross section of visible satellites exceeds $80$ m$^2$ at $800$ km height, or $5$ m$^2$ at $400$ km height. Currently, our diffuse background spectrum is limited by sidelobe confusion on short baselines (10-15% level). Further refinement of our technique may yield constraints on the redshifted global $21$-cm signal from Cosmic Dawn ($40>z>12$) and the Epoch of Reionization ($12>z>5$).
We present a highly frequency multiplexed readout for large-format superconducting detector arrays intended for use in the next generation of balloon-borne and space-based sub-millimeter and far-infrared missions. We will demonstrate this technology on the upcoming NASA Next Generation Balloon-borne Large Aperture Sub-millimeter Telescope (BLAST-TNG) to measure the polarized emission of Galactic dust at wavelengths of 250, 350 and 500 microns. The BLAST-TNG receiver incorporates the first arrays of Lumped Element Kinetic Inductance Detectors (LeKID) along with the first microwave multiplexing readout electronics to fly in a space-like environment and will significantly advance the TRL for these technologies. After the flight of BLAST-TNG, we will continue to improve the performance of the detectors and readout electronics for the next generation of balloon-borne instruments and for use in a future FIR Surveyor.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا