ﻻ يوجد ملخص باللغة العربية
The interfacial Dzyaloshinskii-Moriya interaction (DMI) is of great interest as it can stabilize chiral spin structures in thin films. Experiments verifying the orientation of the interfacial DMI vector remain rare, in part due to the difficulty of separating vector components of DMI. In this study, Fe/Ni bilayers and Co/Ni multilayers were deposited epitaxially onto Cu(001) and Pt(111) substrates, respectively. By tailoring the effective anisotropy, spin reorientation transitions (SRTs) are employed to probe the orientation of the DMI vector by measuring the spin structure of domain walls on both sides of the SRTs. The interfacial DMI is found to be sufficiently strong to stabilize chiral Neel walls in the out-of-plane magnetized regimes, while achiral Neel walls are observed in the in-plane magnetized regimes. These findings experimentally confirm that the out-of-plane component of the DMI vector is insignificant in these fcc(001) and fcc(111) oriented interfaces, even in the presence of atomic steps.
Topological defects such as magnetic solitons, vortices, Bloch lines, and skyrmions have started to play an important role in modern magnetism because of their extraordinary stability, which can be exploited in the production of memory devices. Recen
Chiral spin textures at the interface between ferromagnetic and heavy nonmagnetic metals, such as Neel-type domain walls and skyrmions, have been studied intensively because of their great potential for future nanomagnetic devices. The Dyzaloshinskii
The Dzyaloshinskii-Moriya interaction (DMI) has drawn great attention as it stabilizes magnetic chirality, with important implications in fundamental and applied research. This antisymmetric exchange interaction is induced by the broken inversion sym
The Dzyaloshinskii-Moriya interaction (DMI), being one of the origins for chiral magnetism, is currently attracting huge attention in the research community focusing on applied magnetism and spintronics. For future applications an accurate measuremen
Spin waves can probe the Dzyaloshinskii-Moriya interaction (DMI) which gives rise to topological spin textures, such as skyrmions. However, the DMI has not yet been reported in yttrium iron garnet (YIG) with arguably the lowest damping for spin waves